
TIJER || ISSN 2349-9249 || © February 2024, Volume 11, Issue 2 || www.tijer.org

TIJERB001155 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 965

Comparison study of GPU and CPU for deep

learning methods
1 Charulatha.K

 PG Scholar, Department of Computer Science and

Engineering,

 Panimalar Engineering College, Chennai, India.

2 Rajendiran.M

 Professor, Department of Computer Science and

Engineering,

Panimalar Engineering College, Chennai,India

Abstract— Applications for deep learning and machine

learning have grown significantly in recent years. The

application of ML and DL algorithms can produce relevant

results from the vast quantity of information being generated

online. It has been simple for us to implement these

algorithms due to hardware resources and opensource

libraries. One of the most popular frameworks for

implementing ML projects is Tensorflow with PyTorch.

With the help of such frameworks, we can track the

operations that are carried out on the CPU and GPU to

examine resource allocations and use. The time and memory

allocation of the CPU and GPU during Pytorch-based deep

neural network training is discussed in this research. The

analysis of this research demonstrates that the GPU runs

deep neural networks faster than the CPU. Few are the

notable GPU gains over CPU for simpler networks.

Keywords—CPU, GPU, Memory usage

I. INTRODUCTION

Making a computer system learn without explicit

programming is known as machine learning. To

produce useful information and make conclusions,

enormous amounts of data are needed. "A

computer program is said to learn from experience

E with regard to some class of task T and

performance P," according to the official and

scientific definition of machine learning. if it

becomes more effective at activities in T as

measured by P as it gains experience E." The form

of machine learning called deep learning

frequently uses neural networks to examine data

and make decisions. Artificial neural network

models replicate how the human brain functions.

Due to the massive quantity of matrix and

algebraic operations, deep neural networks require

a lot of calculations and hardware resources to

function properly.

The two processing units that are frequently

utilized to process ML and DL models are the

central processing unit (CPU) and the graphics

processing unit (GPU). While CPU is not utilized

for parallel calculation, GPU is specifically

designed for it [7]. There are two frameworks that

provide abstraction for difficult mathematical

computations in the field of deep learning they

are Pytorch and Tensorflow. When enormous

amounts of data are created, the requirement for

GPUs for deep learning network training

increases.

 GPU CPU
 Figure 1: GPU and CPU

The normal number of cores in a conventional

CPU is 4–5, which limits the number of threads

that may be processed. As seen in Figure 1, GPUs,

on the other hand, contain a huge number of tiny

cores that can support many parallel computing

threads. NVIDIA A6000, as an example, has

10752 CUDA cores [11]. Millions of

computations are made as part of a deep learning

system to train and infer, which requires a GPU

for quick processing [16].

II. PROBLEM STATEMENT

In this paper, we will examine the time and memory

requirements for mathematical operations on CPU and GPU.

Running-time analysis of time and memory helps to

optimise network activities, resulting in quicker execution

and inference. We are able to see network graphs and

determine the execution times of individual operations using

the Pytorch Profiler API and NVIDIA commands, as well as

the current state of memory consumption.

III. SCOPE

The main goal of this paper is to find out how CPU and

GPU [8] activities occur during training machine learning

and deep learning models. The deep learning models will

not be the main focus; rather, the CPU and GPU time and

memory profiling will. The profiling will be produced using

a deep learning model that makes use of the Tensorflow and

Pytorch profiler. Each training stage involves tracing in

order to collect data on memory and timing. Then, the

resource usage of the CPU and GPU are compared.

TIJER || ISSN 2349-9249 || © February 2024, Volume 11, Issue 2 || www.tijer.org

TIJERB001155 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 966

IV. BACKGROUND

A. Tensorflow:

TensorFlow is an free-source software library for

computation numerical operations and developed by the

Google Brain team.

TensorFlow allows developers and researchers to create and

train machine learning models using a variety of high-level

APIs in Python.

It is a flexible for building and deploying machine learning

models at scale, on a variety of platforms including CPUs,

GPUs, and TPUs.

B. Pytorch:

PyTorch is an free-source machine learning framework

which was developed by Facebook's AI research team. Like

TensorFlow, PyTorch provides a platform for building and

training ML models, with a focus on flexibility and ease of

use.

It features a dynamic computational graph that allows

developers to build and modify their models on the fly, as

well as a powerful autograd system that can automatically

compute gradients for any differentiable function[9].

C.Profiler

A profiler is a tool that helps developers to measure and

analyze the performance of their software code

A profiler works by monitoring the execution of a program

and collecting data about the code's performance, including

metrics such as execution time, CPU usage, memory usage,

and more.

D.CUDA

CUDA is widely used in fields such as scientific computing,

machine learning, and high-performance computing[19],

where the massive parallelism of GPUs can be harnessed to

accelerate computation[5]. It has become a popular choice

for building deep learning models using frameworks such as

TensorFlow, PyTorch, and Keras.

E.CPU

A CPU (Central Processing Unit) is responsible for

executing instructions that control the operation of the

computer, including running applications, managing

memory, and handling input/output operations[18].

F.GPU

A GPU (Graphics Processing Unit) is a dedicated processor

mainly developed to handle the complex mathematical

operations essential for rendering images, video, and other

graphical content. GPUs are used in many applications[10]

which includes gaming, scientific computing, and machine

learning. Various GPUs models are available. In this

research, we have used 2 NVIDIA 7680 [20] GPU named

GPU:0 and GPU:1 in this experiment whose specification is

shown is Figure 2.[17]

Fig 2: NVIDIA specifications

F.Neural Network

A neural network is a type of machine learning algorithm,

that works in an organized form to perform a exact task,

such as image recognition or natural language processing.

Neural networks are mainly well-suited for works that

involve recognizing patterns in huge amounts of data.

G.Artificial Intelligence:

Artificial intelligence (AI) is a field of computer science that

focuses on the development of algorithms which leads to the

system can perform tasks without human intervention, such

as perception, reasoning, learning, and decision-making.

The goal of AI is to build machines that can function

autonomously, adapt to changing environments, and

improve their performance over time. AI systems can

process vast amounts of data, learn from their experiences,

and adapt to changing circumstances.

The aim of AI is to build machines that can work and make

decisions autonomously, without human intervention. AI

systems use machine learning algorithms to learn from data

given to the system and improve their performance over

time. These algorithms are trained on bulky amounts of data

to identify the relationships between data that are used to

make predictions or decisions. Other AI techniques include

rule-based systems, expert systems, and evolutionary

algorithms.

H.Machine Learning

Machine learning is a subfield of artificial intelligence

which develops algorithms that learns from the data and

make predictions or decisions based on data [13]. The main

aim of machine learning is to build systems that can

automatically improve their performance on a specific task

over time, without being explicitly programmed to do so.

In machine learning, a model will be trained on a set of

input training data with respective output labels or

predictions. The model then uses this training data to learn

patterns and relations within the data that can be used to

make decisions on new, unseen data (testing data).

I.Deep Learning

Deep learning is a subset of machine learning that uses

neural networks with multiple layers, allowing for the

learning of increasingly abstract features of the data. The

term "deep" refers to the depth of the neural network, which

can have many layers and millions of parameters.

TIJER || ISSN 2349-9249 || © February 2024, Volume 11, Issue 2 || www.tijer.org

TIJERB001155 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 967

Deep learning models are trained with huge amount of data

and it can learn features from the data that are relevant to

the task at hand. The layers in the neural network are

arranged in a hierarchy, with each layer learning features

that are increasingly abstract and complex. The output of the

final layer is used to make decisions based on the input

data[3].

Deep learning requires significant computational resources,

and is typically trained on powerful GPUs or specialized

hardware such as TPUs (Tensor Processing Units).

J.TPU

TPU stands for Tensor Processing Unit, which is a

specialized hardware accelerator designed by Google

specifically for deep learning tasks. TPUs are designed to

work with TensorFlow, a popular deep learning framework,

and are optimized for high-speed matrix operations, which

are commonly used in deep learning algorithms.

TPUs are built using custom-designed chips that are

improved for matrix multiplication and other mathematical

operations commonly used in deep learning. They are able

to complete these operations much faster and more

efficiently than CPUs or GPUs, which can significantly

speed up the training of deep learning models.

In addition to their high performance, TPUs are also

designed to be highly scalable, allowing for the parallel

processing of huge amounts of data. This makes them ideal

for training large, complex models, such as those used in

natural language processing or image recognition.

Google offers access to TPUs through its cloud computing

platform, Google Cloud Platform, making them accessible

to researchers and developers around the world.

K.CPU

CPU stands for Central Processing Unit. It is responsible for

performing the computational tasks. It is frequently denoted

to as the "brain" of a computer[15].

The CPU is responsible for execution of instructions and

commands stored in memory and processing data. CPUs can

also have numerous cores, which allow them to complete

several tasks instantaneously and improve overall

performance.

V. METRICS

A.GPU Utilization

GPU utilization refers to the amount of work that a GPU is

doing at a given time. GPUs are commonly used for

computationally intensive tasks, such as deep learning,

image processing, and scientific simulations, because they

can perform many calculations in parallel, which can

significantly speed up the computation time compared to a

CPU[2].

GPU utilization is typically measured as a percentage, with

100% utilization indicating that the GPU is fully utilized

and all of its processing resources are being used[12]. Lower

utilization percentages indicate that the GPU is not being

fully utilized and may be able to perform additional work.

Monitoring GPU utilization is important for optimizing

performance and identifying potential bottlenecks in a

system.

If a GPU is not being fully utilized, it may indicate that

there is a bottleneck elsewhere in the system, such as in the

CPU or memory[4]. On the other hand, if a GPU is

consistently at 100% utilization, it may indicate that the

workload is too heavy and additional GPUs may be needed

to handle the workload.

GPU utilization can be monitored using various tools, such

as the NVIDIA System Management Interface (nvidia-smi)

or GPU-Z. These tools provide real-time information on

GPU usage, including GPU temperature, memory usage,

and power consumption

B.GPU memory access

GPU memory access and utilization refer to how a GPU uses
its memory to store and access data during computations.
GPUs have their own dedicated memory called Graphics
Random Access Memory (GRAM) or Video Random Access
Memory (VRAM), which is used to store data and
instructions for processing.

GPU memory access refers to how the GPU accesses and
reads/writes data from/to its memory during computations.
The GPU reads data from memory and performs calculations
on that data in parallel [6]. After the computation is
complete, the results are written back to the GPU memory.

GPU memory utilization refers to how much of the GPU
memory is being used at a given time. Just like GPU
utilization, memory utilization is measured as a percentage,
with 100% utilization indicating that the GPU memory is
fully used.

High GPU memory utilization can be a problem because it
can lead to slower performance or even crashes if there is not
enough memory available for the computation. This is
especially true for deep learning models, which often require
large amounts of memory to store the neural network
weights and data.

To optimize GPU memory utilization, developers can use
techniques such as data batching, which involves breaking
up the data into smaller batches that can fit into the GPU
memory, and data parallelism, which involves splitting the
data and processing it simultaneously on multiple GPUs[14].

Monitoring GPU memory utilization is important for
optimizing performance and preventing memory-related
issues. Developers can use tools such as nvidia-smi or GPU-
Z to monitor GPU memory usage in real-time and adjust
their code or system configurations accordingly.

C.GPU power usage

GPU power usage refers to the amount of power consumed

by a GPU during its operation. GPUs are known for their

high power consumption due to their heavy computational

workload and parallel processing capabilities.

The power consumption of a GPU depends on various

factors such as the number of CUDA cores, clock speed,

memory bandwidth, and the workload being executed.

Higher-end GPUs typically consume more power than

lower-end ones due to their higher computational

capabilities.

GPU power usage can be monitored using tools such as

NVIDIA System Management Interface (nvidia-smi), which

provides real-time information on GPU power usage,

temperature, and other metrics. High GPU power usage can

lead to increased heat generation, which can cause thermal

throttling or even damage to the GPU if it is not properly

cooled.

TIJER || ISSN 2349-9249 || © February 2024, Volume 11, Issue 2 || www.tijer.org

TIJERB001155 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 968

To optimize GPU power usage, developers can use

techniques such as data batching, which involves breaking

up the data into smaller batches that can be processed more

efficiently, and precision tuning, which involves selecting

the appropriate data type for the computation to reduce

memory usage and power consumption.

Additionally, using energy-efficient GPUs or implementing

power management strategies, such as dynamic voltage and

frequency scaling, can help reduce GPU power consumption

and improve the overall energy efficiency of a system

D.Bias update

In ML and DL, bias update refers to the process of adjusting

the bias term in a neural network during training. A bias

term is a scalar value that will be added to the output of a

neuron before it is passed through an activation function.

During training, the neural network learns to adjust the

weights and biases of its neurons to minimize the error

between its predicted outputs and the actual outputs. The

bias term is one of the parameters that can be adjusted to

improve the performance of the network.

The bias update process typically involves calculating the

gradient of the loss function with respect to the bias term

using backpropagation. The gradient indicates the direction

and magnitude of the change required to reduce the loss, and

it is used to update the bias term using an optimization

algorithm such as stochastic gradient descent (SGD).

The frequency of bias updates and the learning rate used to

update the bias term can significantly impact the

performance of the network. Updating the bias term too

frequently or with a huge learning rate can cause the

network to converge to a suboptimal solution, while

updating it too infrequently or with a small learning rate can

result in slow convergence and longer training times.

Bias update is an essential component of neural network

training, and optimizing this process is critical to achieving

high performance and accuracy in machine learning and

deep learning applications.

E.Accurarcy

In machine learning (ML) and deep learning (DL), accuracy

is a measure of how well a model is able to correctly predict

the outcomes of a task. It is a commonly used metric to

evaluate the performance of a model on a specific task, such

as image classification or natural language processing.

Accuracy is typically defined as the ratio of the number of

correct predictions made by the model to the total number of

predictions made. It is expressed as a percentage, with a

value of 100% indicating that the model has made all the

correct predictions.

For example, in image classification, accuracy is calculated

by comparing the predicted labels to the actual labels of a

set of images. The accuracy of the model is the percentage

of images that were classified correctly.

While accuracy is a main important metric for calculating

the performance of a model, it is not constantly the finest

metric to use, especially in cases where the classes are

imbalanced. In such cases, a model that predicts the

majority class for all instances may attain high accuracy,

even though it is not very useful in practice.

F.Throughput

In machine learning and deep learning applications,

throughput refers to the rate at which a model can process

input data and generate output predictions. It is a critical

performance metric for applications such as real-time image

and speech recognition, where the system needs to process

large volumes of data quickly and efficiently.

The throughput of a machine learning or deep learning

model can be pretentious by numerous issues such as the

model architecture, input data size, and hardware

infrastructure. The amount of operations essential to process

each input, the amount of memory required to store the

model and input data, and the speed of the processors and

other hardware components all contribute to the throughput

of the system.

To optimize the throughput of a machine learning or deep

learning system, developers often use techniques such as

model quantization, which involves reducing the precision

of the model parameters to reduce the memory requirements

and speed up the processing time. They may also use

specialized hardware such as GPUs or TPUs to speed up the

computation and improve the throughput.

Overall, the throughput of a machine learning or deep

learning system is a critical factor in determining its

performance and suitability for real-world applications. By

optimizing the throughput, developers can ensure that the

system can process large volumes of data quickly and

accurately, and meet the demands of modern data-intensive

applications.

VI. SIMULATION SETUP

The main goal of the paper is finding out how much

resources is utilized by CPU and GPU for training a deep

learning and machine learning model. Tensorflow and

pytorch together constructs a convolutional neural network

model and the model is pre-trained using denseNet and has

changed the last layer of the neural network to train out

dataset. The neural network has been trained on CPU, GPU

[1] and Pytorch model. In our model Profiler had been used

to visualize the performance. Many frameworks has been

used along with that NVIDIA has been used to evaluate the

GPU performance. The experimental conditions that are

configured to carry out this experiment specifically for

hardware are listed below.

 Operating System: Ubuntu 20.04/Windows 11

 Manufacturer: Acer

 CPU: Intel core i9 -1 to 900

 GPU: NVIDIA 7680

 Total GPU Memory: 12 GB

 Clock Rate: 1.55 GHZ

 Total RAM: 32 GB

 Total Disk: 4 TB SSD

TIJER || ISSN 2349-9249 || © February 2024, Volume 11, Issue 2 || www.tijer.org

TIJERB001155 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 969

Fig 3 : DenseNet architecture

The neural network and the dataset used in our research are,

the dataset has been downloaded from Kaggle. There are a

total of 1000 training set and 502 testing set of dog and cat

images. The architecture is defined using a pretrained CNN

network called "densenet121". Transfer learning is utilized

to train the network since it speeds up the learning process

and frees up time for evaluation. In order to determine the

response of CPU and GPU resource utilization, various

hyper parameters are adjusted.

The settings for the convolutional neural network model are

listed below.

 Model: DenseNet121

 Total Training set: 1000

 Total Testing set: 502

 Total classes: 2

 Total epochs: 10

 Optimizer: Adam

 Loss Function: Cross-entropy

 Batch size: 32 and 64

 Learning Rate: 0.001 and 0.01

VII. DISCUSSION AND RESULT

CPU and GPU metrics has been carefully evaluated and the

CNN model is trained for 10 epochs.

A.Throughput

The inference time is used to calculate the throughput.

Inference takes more time on the CPU than on the GPU. A

single image tests in the CPU in around 5 seconds, while a

single image tests in the GPU in about 2-3 seconds, which is

better than the CPU. This demonstrates that GPU also

contributes significantly to the inference time that affects

network throughput.

B.Accuracy

On both the CPU and the GPU, the test accuracy appears to

be comparably equal. Even though training the model on a

CPU takes a long time, there are no appreciable changes in

test accuracy between CPU and GPU testing. Both the CPU

and GPU test accuracy ranges from (98-99)%.

C.Utilization

The computations are split between two GPUs with a

learning range of 0.001 and a batch size of 32, only 3% of

the GPU:0 and 14% of the second GPU:1 were used to train

the model. It displays the GPU model's minimal use. The

task was first handled by the CPU, which used 62% of the

total resources.

There is greater GPU usage than previously after raising the

batch size by 32, making the total batch size 64. GPU:0 uses

69% of the system's total RAM, whereas GPU:1 uses 14%.

This demonstrates how understanding GPU utilization

metrics enables us to adjust the hyper parameters inside

neural networks, which are always helpful for network

optimization.

However, compared to GPU, the model training time when

utilizing only CPU is considerably greater. It demonstrates

that in order to train deep neural networks quickly and

effectively, GPU use must be maximized.

Fig 4: Tensorflow implementation in simulations

Fig 5: predicting results

VIII. CONCLUSION

We have run tests to demonstrate how the deep learning

model's CPU and GPU affect the amount of time and

memory they use. The training of artificial neural networks

is influenced by numerous factors. We have investigated the

effectiveness of various metrics for CPU and GPU

consumption. We also draw the conclusion from the

experiment that some neural network model parameters are

also in charge of CPU and GPU resource utilization. After

profiling, we can see how the use of the CPU and GPU for

the optimization process affects performance.

TIJER || ISSN 2349-9249 || © February 2024, Volume 11, Issue 2 || www.tijer.org

TIJERB001155 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 970

REFERENCES

[1] Raju, K., Niranjan N. Chiplunkar, and Kavoor

Rajanikanth. "A CPU-GPU cooperative sorting

approach." 2019 Innovations in Power and Advanced

Computing Technologies (i-PACT). Vol. 1. IEEE,

2019.

[2] Yudha, Ardhi Wiratama Baskara, et al. "A simple cache

coherence scheme for integrated CPU-GPU systems."

2020 57th ACM/IEEE Design Automation Conference

(DAC). IEEE, 2020.

[3] Sourouri, Mohammed, et al. "CPU+ GPU programming

of stencil computations for resource-efficient use of

GPU clusters." 2015 IEEE 18th International

Conference on Computational Science and Engineering.

IEEE, 2015.

[4] Yang, Yi, et al. "CPU-assisted GPGPU on fused CPU-

GPU architectures." IEEE International Symposium on

High-Performance Comp Architecture. IEEE, 2012.

[5] Valerievich, Bakulev Aleksandr, et al. "The

implementation on CUDA platform parallel algorithms

sort the data." 2017 6th mediterranean conference on

embedded computing (MECO). IEEE, 2017.

[6] Buber, Ebubekir, and D. I. R. I. Banu. "Performance

analysis and CPU vs GPU comparison for deep

learning." 2018 6th International Conference on Control

Engineering & Information Technology (CEIT). IEEE,

2018.

[7] Thomas, Winnie, and Rohin D. Daruwala.

"Performance comparison of CPU and GPU on a

discrete heterogeneous architecture." 2014 International

Conference on Circuits, Systems, Communication and

Information Technology Applications (CSCITA).

IEEE, 2014.

[8] Arora, Manish, et al. "Redefining the Role of the CPU

in the Era of CPU-GPU Integration." IEEE Micro 32.6

(2012): 4-16.

[9] China, Tianjin. "The face detection system based on

GPU+ CPU desktop cluster."

[10] Power, Jason, et al. "gem5-gpu: A heterogeneous cpu-

gpu simulator." IEEE Computer Architecture Letters

14.1 (2014): 34-36.

[11] Bakhoda, Ali, et al. "Analyzing CUDA workloads using

a detailed GPU simulator." 2009 IEEE international

symposium on performance analysis of systems and

software. IEEE, 2009.

[12] Harvey, Jesse Patrick. "Gpu acceleration of object

classification algorithms using nvidia cuda." (2009).

[13] Sarker, Iqbal H. "Machine learning: Algorithms, real-

world applications and research directions." SN

computer science 2.3 (2021): 160.

[14] Rai, Siddharth, and Mainak Chaudhuri. "Improving

CPU performance through dynamic GPU access

throttling in CPU-GPU heterogeneous processors."

2017 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). IEEE,

2017.

[15] Buber, Ebubekir, and D. I. R. I. Banu. "Performance

analysis and CPU vs GPU comparison for deep

learning." 2018 6th International Conference on Control

Engineering & Information Technology (CEIT). IEEE,

2018.

[16] Chandrashekhar, B. N., H. A. Sanjay, and Tulasi

Srinivas. "Performance Analysis of Parallel

Programming Paradigms on CPU-GPU Clusters." 2021

International Conference on Artificial Intelligence and

Smart Systems (ICAIS). IEEE, 2021.

[17] Wezowicz, Matthew, and Michela Taufer. "On the cost

of a general GPU framework: the strange case of

CUDA 4.0 vs. CUDA 5.0." 2012 SC Companion: High

Performance Computing, Networking, Storage and

Analysis (SCC). Vol. 1. IEEE Computer Society, 2012.

[18] Hukerikar, Saurabh, and Nirmal Saxena. "Runtime

Fault Diagnostics for GPU Tensor Cores." 2022 IEEE

International Test Conference (ITC). IEEE, 2022.

[19] Kumakura, Kota, et al. "CPU Usage Trends in Android

Applications." 2022 IEEE International Conference on

Big Data (Big Data). IEEE, 2022.

[20] Choquette, Jack, et al. "Nvidia a100 tensor core gpu:

Performance and innovation." IEEE Micro 41.2 (2021):

29-35.

