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Abstract— Applications for deep learning and machine 

learning have grown significantly in recent years. The 

application of ML and DL algorithms can produce relevant 

results from the vast quantity of information being generated 

online. It has been simple for us to implement these 

algorithms due to hardware resources and opensource 

libraries. One of the most popular frameworks for 

implementing ML projects is Tensorflow with PyTorch. 

With the help of such frameworks, we can track the 

operations that are carried out on the CPU and GPU to 

examine resource allocations and use. The time and memory 

allocation of the CPU and GPU during Pytorch-based deep 

neural network training is discussed in this research. The 

analysis of this research demonstrates that the GPU runs 

deep neural networks faster than the CPU. Few are the 

notable GPU gains over CPU for simpler networks. 
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I. INTRODUCTION  

Making a computer system learn without explicit 

programming is known as machine learning. To 

produce useful information and make conclusions, 

enormous amounts of data are needed. "A 

computer program is said to learn from experience 

E with regard to some class of task T and 

performance P," according to the official and 

scientific definition of machine learning. if it 

becomes more effective at activities in T as 

measured by P as it gains experience E." The form 

of machine learning called deep learning 

frequently uses neural networks to examine data 

and make decisions. Artificial neural network 

models replicate how the human brain functions. 

Due to the massive quantity of matrix and 

algebraic operations, deep neural networks require 

a lot of calculations and hardware resources to 

function properly.                                                                                                     

The two processing units that are frequently 

utilized to process ML and DL models are the 

central processing unit (CPU) and the graphics 

processing unit (GPU). While CPU is not utilized 

for parallel calculation, GPU is specifically 

designed for it [7]. There are two frameworks that 

provide abstraction for difficult mathematical 

computations in the field of deep learning they 

are Pytorch and Tensorflow. When enormous 

amounts of data are created, the requirement for 

GPUs for deep learning network training 

increases.  

 

 

 

 
                 GPU         CPU 
   Figure 1: GPU and CPU 

The normal number of cores in a conventional 

CPU is 4–5, which limits the number of threads 

that may be processed. As seen in Figure 1, GPUs, 

on the other hand, contain a huge number of tiny 

cores that can support many parallel computing 

threads. NVIDIA A6000, as an example, has 

10752 CUDA cores [11]. Millions of 

computations are made as part of a deep learning 

system to train and infer, which requires a GPU 

for quick processing [16]. 

 

II. PROBLEM STATEMENT 

In this paper, we will examine the time and memory 

requirements for mathematical operations on CPU and GPU. 

Running-time analysis of time and memory helps to 

optimise network activities, resulting in quicker execution 

and inference. We are able to see network graphs and 

determine the execution times of individual operations using 

the Pytorch Profiler API and NVIDIA commands, as well as 

the current state of memory consumption. 

 

III. SCOPE 

The main goal of this paper is to find out how CPU and 

GPU [8] activities occur during training machine learning 

and deep learning models. The deep learning models will 

not be the main focus; rather, the CPU and GPU time and 

memory profiling will. The profiling will be produced using 

a deep learning model that makes use of the Tensorflow and 

Pytorch profiler.   Each training stage involves tracing in 

order to collect data on memory and timing. Then, the 

resource usage of the CPU and GPU are compared. 
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IV.  BACKGROUND 

A. Tensorflow: 

TensorFlow is an free-source software library for 

computation numerical operations and developed by the 

Google Brain team.  

TensorFlow allows developers and researchers to create and 

train machine learning models using a variety of high-level 

APIs in Python.  

It is a flexible  for building and deploying machine learning 

models at scale, on a variety of platforms including CPUs, 

GPUs, and TPUs. 

 

B. Pytorch: 

PyTorch is an free-source machine learning framework 

which was developed by Facebook's AI research team. Like 

TensorFlow, PyTorch provides a platform for building and 

training ML models, with a focus on flexibility and ease of 

use. 

It features a dynamic computational graph that allows 

developers to build and modify their models on the fly, as 

well as a powerful autograd system that can automatically 

compute gradients for any differentiable function[9]. 

C.Profiler 

A profiler is a tool that helps developers to measure and 

analyze the performance of their software code 

A profiler works by monitoring the execution of a program 

and collecting data about the code's performance, including 

metrics such as execution time, CPU usage, memory usage, 

and more. 

D.CUDA 

CUDA is widely used in fields such as scientific computing, 

machine learning, and high-performance computing[19], 

where the massive parallelism of GPUs can be harnessed to 

accelerate computation[5]. It has become a popular choice 

for building deep learning models using frameworks such as 

TensorFlow, PyTorch, and Keras. 

 

E.CPU 

A CPU (Central Processing Unit) is responsible for 

executing instructions that control the operation of the 

computer, including running applications, managing 

memory, and handling input/output operations[18]. 

 

F.GPU 

A GPU (Graphics Processing Unit) is a dedicated processor 

mainly developed to handle the complex mathematical 

operations essential for rendering images, video, and other 

graphical content. GPUs are used in many applications[10] 

which  includes gaming, scientific computing, and machine 

learning. Various GPUs models are available. In this 

research, we have used 2 NVIDIA 7680 [20] GPU named 

GPU:0 and GPU:1 in this experiment whose specification is 

shown is Figure 2.[17] 

 

Fig 2: NVIDIA specifications 

F.Neural Network 

A neural network is a type of machine learning algorithm, 

that works in an organized form to perform a exact task, 

such as image recognition or natural language processing. 

Neural networks are mainly well-suited for works that 

involve recognizing patterns in huge amounts of data. 

 

G.Artificial Intelligence: 

Artificial intelligence (AI) is a field of computer science that 

focuses on the development of algorithms which leads to the 

system can perform tasks without human intervention, such 

as perception, reasoning, learning, and decision-making. 

The goal of AI is to build machines that can function 

autonomously, adapt to changing environments, and 

improve their performance over time. AI systems can 

process vast amounts of data, learn from their experiences, 

and adapt to changing circumstances.  

 

The aim of AI is to build machines that can work and make 

decisions autonomously, without human intervention. AI 

systems use machine learning algorithms to learn from data 

given to the system and improve their performance over 

time. These algorithms are trained on bulky amounts of data 

to identify the relationships between data that are used to 

make predictions or decisions. Other AI techniques include 

rule-based systems, expert systems, and evolutionary 

algorithms. 

H.Machine Learning 

Machine learning is a subfield of artificial intelligence 

which develops algorithms that learns from the data and 

make predictions or decisions based on data [13]. The main 

aim of machine learning is to build systems that can 

automatically improve their performance on a specific task 

over time, without being explicitly programmed to do so. 

 

In machine learning, a model will be trained on a set of 

input training data with respective output labels or 

predictions. The model then uses this training data to learn 

patterns and relations within the data that can be used to 

make decisions on new, unseen data (testing data). 

I.Deep Learning 

Deep learning is a subset of machine learning that uses 

neural networks with multiple layers, allowing for the 

learning of increasingly abstract features of the data. The 

term "deep" refers to the depth of the neural network, which 

can have many layers and millions of parameters. 
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Deep learning models are trained with huge amount of data 

and it can  learn features from the data that are relevant to 

the task at hand. The layers in the neural network are 

arranged in a hierarchy, with each layer learning features 

that are increasingly abstract and complex. The output of the 

final layer is used to make decisions based on the input 

data[3].  

 

Deep learning requires significant computational resources, 

and is typically trained on powerful GPUs or specialized 

hardware such as TPUs (Tensor Processing Units). 

 

J.TPU 

TPU stands for Tensor Processing Unit, which is a 

specialized hardware accelerator designed by Google 

specifically for deep learning tasks. TPUs are designed to 

work with TensorFlow, a popular deep learning framework, 

and are optimized for high-speed matrix operations, which 

are commonly used in deep learning algorithms. 

 

TPUs are built using custom-designed chips that are 

improved for matrix multiplication and other mathematical 

operations commonly used in deep learning. They are able 

to complete these operations much faster and more 

efficiently than CPUs or GPUs, which can significantly 

speed up the training of deep learning models. 

 

In addition to their high performance, TPUs are also 

designed to be highly scalable, allowing for the parallel 

processing of huge amounts of data. This makes them ideal 

for training large, complex models, such as those used in 

natural language processing or image recognition. 

Google offers access to TPUs through its cloud computing 

platform, Google Cloud Platform, making them accessible 

to researchers and developers around the world. 

K.CPU 

CPU stands for Central Processing Unit. It is responsible for 

performing the computational tasks. It is frequently denoted 

to as the "brain" of a computer[15]. 

 

The CPU is responsible for execution of instructions and 

commands stored in memory and processing data. CPUs can 

also have numerous cores, which allow them to complete 

several tasks instantaneously and improve overall 

performance. 

 

 

V. METRICS 

A.GPU Utilization 

GPU utilization refers to the amount of work that a GPU is 

doing at a given time. GPUs are commonly used for 

computationally intensive tasks, such as deep learning, 

image processing, and scientific simulations, because they 

can perform many calculations in parallel, which can 

significantly speed up the computation time compared to a 

CPU[2]. 

 

GPU utilization is typically measured as a percentage, with 

100% utilization indicating that the GPU is fully utilized 

and all of its processing resources are being used[12]. Lower 

utilization percentages indicate that the GPU is not being 

fully utilized and may be able to perform additional work. 

Monitoring GPU utilization is important for optimizing 

performance and identifying potential bottlenecks in a 

system.  

 

If a GPU is not being fully utilized, it may indicate that 

there is a bottleneck elsewhere in the system, such as in the 

CPU or memory[4]. On the other hand, if a GPU is 

consistently at 100% utilization, it may indicate that the 

workload is too heavy and additional GPUs may be needed 

to handle the workload. 

 

GPU utilization can be monitored using various tools, such 

as the NVIDIA System Management Interface (nvidia-smi) 

or GPU-Z. These tools provide real-time information on 

GPU usage, including GPU temperature, memory usage, 

and power consumption 

B.GPU memory access 

GPU memory access and utilization refer to how a GPU uses 
its memory to store and access data during computations. 
GPUs have their own dedicated memory called Graphics 
Random Access Memory (GRAM) or Video Random Access 
Memory (VRAM), which is used to store data and 
instructions for processing. 

GPU memory access refers to how the GPU accesses and 
reads/writes data from/to its memory during computations. 
The GPU reads data from memory and performs calculations 
on that data in parallel [6]. After the computation is 
complete, the results are written back to the GPU memory. 

GPU memory utilization refers to how much of the GPU 
memory is being used at a given time. Just like GPU 
utilization, memory utilization is measured as a percentage, 
with 100% utilization indicating that the GPU memory is 
fully used. 

High GPU memory utilization can be a problem because it 
can lead to slower performance or even crashes if there is not 
enough memory available for the computation. This is 
especially true for deep learning models, which often require 
large amounts of memory to store the neural network 
weights and data. 

To optimize GPU memory utilization, developers can use 
techniques such as data batching, which involves breaking 
up the data into smaller batches that can fit into the GPU 
memory, and data parallelism, which involves splitting the 
data and processing it simultaneously on multiple GPUs[14]. 

Monitoring GPU memory utilization is important for 
optimizing performance and preventing memory-related 
issues. Developers can use tools such as nvidia-smi or GPU-
Z to monitor GPU memory usage in real-time and adjust 
their code or system configurations accordingly. 

C.GPU power usage 

GPU power usage refers to the amount of power consumed 

by a GPU during its operation. GPUs are known for their 

high power consumption due to their heavy computational 

workload and parallel processing capabilities. 

 

The power consumption of a GPU depends on various 

factors such as the number of CUDA cores, clock speed, 

memory bandwidth, and the workload being executed. 

Higher-end GPUs typically consume more power than 

lower-end ones due to their higher computational 

capabilities. 

 

GPU power usage can be monitored using tools such as 

NVIDIA System Management Interface (nvidia-smi), which 

provides real-time information on GPU power usage, 

temperature, and other metrics. High GPU power usage can 

lead to increased heat generation, which can cause thermal 

throttling or even damage to the GPU if it is not properly 

cooled. 
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To optimize GPU power usage, developers can use 

techniques such as data batching, which involves breaking 

up the data into smaller batches that can be processed more 

efficiently, and precision tuning, which involves selecting 

the appropriate data type for the computation to reduce 

memory usage and power consumption. 

 

Additionally, using energy-efficient GPUs or implementing 

power management strategies, such as dynamic voltage and 

frequency scaling, can help reduce GPU power consumption 

and improve the overall energy efficiency of a system 

 

D.Bias update 

In ML and DL, bias update refers to the process of adjusting 

the bias term in a neural network during training. A bias 

term is a scalar value that will be added to the output of a 

neuron before it is passed through an activation function. 

 

During training, the neural network learns to adjust the 

weights and biases of its neurons to minimize the error 

between its predicted outputs and the actual outputs. The 

bias term is one of the parameters that can be adjusted to 

improve the performance of the network. 

 

The bias update process typically involves calculating the 

gradient of the loss function with respect to the bias term 

using backpropagation. The gradient indicates the direction 

and magnitude of the change required to reduce the loss, and 

it is used to update the bias term using an optimization 

algorithm such as stochastic gradient descent (SGD). 

 

The frequency of bias updates and the learning rate used to 

update the bias term can significantly impact the 

performance of the network. Updating the bias term too 

frequently or with a huge learning rate can cause the 

network to converge to a suboptimal solution, while 

updating it too infrequently or with a small learning rate can 

result in slow convergence and longer training times. 

 

Bias update is an essential component of neural network 

training, and optimizing this process is critical to achieving 

high performance and accuracy in machine learning and 

deep learning applications. 

E.Accurarcy 

In machine learning (ML) and deep learning (DL), accuracy 

is a measure of how well a model is able to correctly predict 

the outcomes of a task. It is a commonly used metric to 

evaluate the performance of a model on a specific task, such 

as image classification or natural language processing. 

 

Accuracy is typically defined as the ratio of the number of 

correct predictions made by the model to the total number of 

predictions made. It is expressed as a percentage, with a 

value of 100% indicating that the model has made all the 

correct predictions. 

 

For example, in image classification, accuracy is calculated 

by comparing the predicted labels to the actual labels of a 

set of images. The accuracy of the model is the percentage 

of images that were classified correctly. 

 

While accuracy is a main important metric for calculating 

the performance of a model, it is not constantly the finest 

metric to use, especially in cases where the classes are 

imbalanced. In such cases, a model that predicts the 

majority class for all instances may attain high accuracy, 

even though it is not very useful in practice. 

F.Throughput 

In machine learning and deep learning applications, 

throughput refers to the rate at which a model can process 

input data and generate output predictions. It is a critical 

performance metric for applications such as real-time image 

and speech recognition, where the system needs to process 

large volumes of data quickly and efficiently. 

 

The throughput of a machine learning or deep learning 

model can be pretentious by numerous issues such as the 

model architecture, input data size, and hardware 

infrastructure. The amount of operations essential to process 

each input, the amount of memory required to store the 

model and input data, and the speed of the processors and 

other hardware components all contribute to the throughput 

of the system. 

 

To optimize the throughput of a machine learning or deep 

learning system, developers often use techniques such as 

model quantization, which involves reducing the precision 

of the model parameters to reduce the memory requirements 

and speed up the processing time. They may also use 

specialized hardware such as GPUs or TPUs to speed up the 

computation and improve the throughput. 

 

Overall, the throughput of a machine learning or deep 

learning system is a critical factor in determining its 

performance and suitability for real-world applications. By 

optimizing the throughput, developers can ensure that the 

system can process large volumes of data quickly and 

accurately, and meet the demands of modern data-intensive 

applications. 

 

VI. SIMULATION SETUP 

The main goal of the paper is finding out how much 

resources is utilized by CPU and GPU for training a deep 

learning and machine learning model. Tensorflow and 

pytorch together constructs a convolutional neural network 

model and the model is pre-trained  using denseNet and has 

changed the last layer of the neural network to train out 

dataset. The neural network has been trained on CPU, GPU 

[1] and Pytorch model. In our model Profiler had been used 

to visualize the performance. Many frameworks has been 

used along with that NVIDIA has been used to evaluate the 

GPU performance. The experimental conditions that are 

configured to carry out this experiment specifically for 

hardware are listed below.   

 

 Operating System: Ubuntu 20.04/Windows 11 

 Manufacturer: Acer 

 CPU: Intel core i9 -1 to 900 

 GPU: NVIDIA 7680 

 Total GPU Memory: 12 GB  

 Clock Rate: 1.55 GHZ 

 Total RAM: 32 GB 

 Total Disk: 4 TB SSD 
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Fig 3 : DenseNet architecture 

 

The neural network and the dataset used in our research are, 

the dataset has been downloaded from Kaggle. There are a 

total of 1000 training set and 502 testing set of dog and cat 

images. The architecture is defined using a pretrained CNN 

network called "densenet121". Transfer learning is utilized 

to train the network since it speeds up the learning process 

and frees up time for evaluation. In order to determine the 

response of CPU and GPU resource utilization, various 

hyper parameters are adjusted.  

 

The settings for the convolutional neural network model are 

listed below. 

 

 Model: DenseNet121  

 Total Training set: 1000 

 Total Testing set: 502 

 Total classes: 2 

 Total epochs: 10 

 Optimizer: Adam 

 Loss Function: Cross-entropy 

 Batch size: 32 and 64 

 Learning Rate: 0.001 and 0.01 

 

VII. DISCUSSION AND RESULT 

CPU and GPU metrics has been carefully evaluated and the 

CNN model is trained for 10 epochs. 

A.Throughput 

The inference time is used to calculate the throughput. 

Inference takes more time on the CPU than on the GPU. A 

single image tests in the CPU in around 5 seconds, while a 

single image tests in the GPU in about 2-3 seconds, which is 

better than the CPU. This demonstrates that GPU also 

contributes significantly to the inference time that affects 

network throughput. 

B.Accuracy 

On both the CPU and the GPU, the test accuracy appears to 

be comparably equal. Even though training the model on a 

CPU takes a long time, there are no appreciable changes in 

test accuracy between CPU and GPU testing. Both the CPU 

and GPU test accuracy ranges from (98-99)%. 

 

C.Utilization 

The computations are split between two GPUs with a 

learning range of 0.001 and a batch size of 32,  only 3% of 

the GPU:0 and 14% of the second GPU:1 were used to train 

the model. It displays the GPU model's minimal use. The 

task was first handled by the CPU, which used 62% of the 

total resources. 

 

There is greater GPU usage than previously after raising the 

batch size by 32, making the total batch size 64. GPU:0 uses 

69% of the system's total RAM, whereas GPU:1 uses 14%. 

This demonstrates how understanding GPU utilization 

metrics enables us to adjust the hyper parameters inside 

neural networks, which are always helpful for network 

optimization. 

 

However, compared to GPU, the model training time when 

utilizing only CPU is considerably greater. It demonstrates 

that in order to train deep neural networks quickly and 

effectively, GPU use must be maximized. 

 

 

 

 

Fig 4: Tensorflow implementation in simulations 

 

 

 

Fig 5: predicting results 

VIII. CONCLUSION 

We have run tests to demonstrate how the deep learning 

model's CPU and GPU affect the amount of time and 

memory they use. The training of artificial neural networks 

is influenced by numerous factors. We have investigated the 

effectiveness of various metrics for CPU and GPU 

consumption. We also draw the conclusion from the 

experiment that some neural network model parameters are 

also in charge of CPU and GPU resource utilization. After 

profiling, we can see how the use of the CPU and GPU for 

the optimization process affects performance. 
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