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Abstract– In the research, we investigate the viability of 

applying machine learning and visual computing to identify 

various fungal infections of rice. Brown spot and leaf blast 

illnesses are taken into account. To recognise a specific 

disease on an image, modern computer vision techniques 

based on convolutional neural networks are employed. The 

four most popular and compact convolutional neural 

network architectures—GoogleNet, ResNet-18, 

SqueezeNet-1.0, and DenseNet-121—are compared by the 

authors. The authors demonstrate that the disease can be 

identified with at least 95% accuracy in the dataset utilized 

for the investigation. Testing the algorithm on real data that 

wasn't used for training revealed up to 95.6% accuracy. 

This is a good sign of the solution's dependability and 

stability, even when the data distribution changes. The data 

which is not used in the training gives the accuracy of 

95.6%. This is a good sign of the solution's dependability 

and stability, even when the data distribution changes. 

 

I. INTRODUCTION 

 

One of the most significant grain crops in the world is rice. 

Throughout the past several years, this cereal has seen a 

surge in popularity worldwide. In comparison to 437.18 

million tonnes in 2008, more than 490 million tonnes of 

rice were eaten globally in 2019. China and India are the 

world's two largest consumers of rice, consuming 143 and 

100 million tonnes each, while Indonesia, Bangladesh, and 

Vietnam account for 37,7 million tonnes, 35,8 million 

tonnes, and more than 56% of global rice production, 

respectively (21.5 million tons). In Russia, rice is an 

important food, nutritional, and medicinal item. Consumed 

cereals are expanding every year. Its proportion in the eaten 

cereals is growing every year. 

 

In Russia, losses in rice production range from 20% to 40% 

due to diseases and pests. Fungal infections also inflict 

enormous economic harm to the rice industry. According to 

various estimates, losses in Russia due to blast illnesses 

alone (causative agent, Pyricularia oryzae Cavara) range 

from 5% to 25% in normal years and up to 60% or even 

100% in years when the disease develops epiphytically. As 

a result of a large drop in the grain's quality derived from 

the afflicted plants, the harm increases dramatically. 

 

 

 

 

The agrochemicals are sprayed uniformly across the field in 

today's common pest management techniques as a 

preventative measure or when any disease symptoms are 

found. In addition, diseases in their early stages are 

frequently misdiagnosed, which leads to incorrect complex 

agrochemical selection. On the one hand, it significantly 

raises the cost of disease control because, at least initially, 

the disease infection is concentrated primarily in the 

vicinity of the original foci. On the other hand, excessive 

chemical application increases the possibility of 

groundwater contamination and negatively influences the 

presence of toxic residues in agricultural products. 

 

Due to these restrictions, a sizable body of research 

exploring the potential application of machine learning 

techniques to the issues of automatic detection and 

classification of crop diseases based on digital images has 

emerged. Similar basic methodologies are used in these 

investigations. Initially, cameras or scanners are used to 

record images of diseases. The second step is to separate 

the impacted regions (spots) from the background. Thirdly, 

characteristics are taken from idiosyncrasies of colour, 

form, or texture. Finally, disease images are classified 

using algorithms such as neural networks, Bayesian 

classifiers, k- nearest neighbour (kNNs), support vector 

machines (SVMs), and others. 

 

A machine learning technique for detecting and identifying 

rice illnesses such as blasts of rice (RB), leaf blight caused 

by bacteria (BLB), blight of the sheath (SB), and healthy 

leaf (HL) (HL) is given. It was paired with an SVM 

classifier and an advanced convolutional neural network 

(CNN) extractor of features that had been pre-trained. 

Preprocessing is given a lot of thought in the research since 

plants may contain dust, dew droplets, and other particles 

that produce noise in the data and cause issues in the 

division and extraction of attributes phases. The kNN 

classifier was utilized to provide a technique to recognise 

Blast and Brown Spot illnesses based on geometric factors 

such as area, main and secondary semi-axes of areas, and 

the perimeter of the damaged leaf section. 
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II. RELATED WORKS 

 

One of the intriguing research areas in the computer and 

agricultural fields is the detection of disease from 

photographs of the plant. These parameters include picture 

dataset size, number of classes (diseases), preprocessing, 

segmentation methods, classifier types, classifier accuracy, 

etc. [1] The two-stage transfer learning was used in the 

model training to create an effective model. The proposed 

method may achieve the intended performance, according 

to experimental results, with an average recognition 

accuracy of 99.21% on the public dataset and 97.89% on 

the local dataset. [2] A survey study was conducted 

utilizing CNNs technique on eight main rice diseases, 

including bacterial leaf blight, false smut, rice hispa, blast, 

stemborer, sheath blight, brown spot, and brown 

planthopper. [3] In an effort to better understand the variety 

and identify antagonistic bacteria that are associated with 

rice in various microenvironments, the endophytic bacteria 

Deinococcus aquaticus strain 1Re14, Acidovorax sp. isolate 

3Re21, and Brevibacillus brevis strain 1Pe2 are the first to 

be identified as such. [4] By activating the SA-dependent 

plant defense mechanisms, pre-inoculation with the 

endophytic fungus P. liquidambaris B3 greatly reduced rice 

bakanae disease and aided plant growth. Nevertheless, co- 

inoculation with P. liquidambaris B3 triggered overly 

aggressive defense reactions, killing plants and 

exacerbating the bakanae illness. [5]Because RS toxin can 

be inactivated by the microbial glucosidase enzyme, 

isolating the gene that codes for the enzyme from T. viride 

and transferring it to rice plants would result in increased 

resistance to the sheath blight pathogen through RS toxin 

inactivation..[6] Polysaccharide-treated seedlings had 

increased peroxidase and polyphenol-oxidase activity, as 

well as total phenols concentration. OsPR1.1, OsPR3, 

OsGLP3-3, OsZFP179, and Oshox24 were upregulated in 

treated plantlets, while OsACS6 was downregulated[7] 

Due to a lack of knowledge on RST pathway genes and the 

lack of a ShBresistant variety, understanding the different 

metabolic alterations induced in the prone variety by the 

phytotoxin in contrast with infectious and uninoculated 

controls allows us to identify important metabolite changes 

that occur during ShB infection. [8] In vitro antifungal 

activity against Magnaporthe oryzae, Rhizoctonia solani, 

Botrytis cinerea, and Fusarium graminearum were 

investigated for five putative plant growth-promoting 

rhizobacterial (PGPR) strains isolated from rice 

rhizospheres. The formation of indoleacetic acid, ammonia, 

siderophores, and catalase activity, as well as the 

solubilization of phosphate, were all favorable indicators 

for all three strains. By using multiplex PCR, it was 

discovered that these strains have several lipopeptide 

biosynthetic genes and were capable of forming biofilms. 

[9] Bacterial and fungal infections have a serious negative 

impact on this very valuable crop, significantly reducing 

crop yield. 11 of the roughly 70 well-known illnesses that 

have an impact on crop output are caused by bacteria. [10] 

According to reports from around the world, bacteria from 

the genus Pantoea can cause rice leaf blight. The 

symptomatic leaves displayed comparable trends in 

contamination with X. oryzae pv. Fungus-caused leaf 

blight,but the disease was capable of significantly reducing 

rice grain yield.[11] Prediction of illness in rice leaf using 

DenseNet, a deep learning algorithm. DenseNet training, 

specifically DenseNet121, DenseNet169, and 

DenseNet201. DenseNet121 achieved accuracy of 91.67%, 

DenseNet169 of 90%, and DenseNet201 of 88.33%. 24 

seconds pass throughout the model training process. [12] 

The model first trains on a unique static dataset using 

Residual Network (ResNet) and VGGNet-based CNN 

model, and then incrementally learns new information 

using a network of Gated Recurrent Units (GRU). [13] The 

dataset for the rice disease patch produced in the first stage 

was identified using a Siamese Network. The comparison 

experiment revealed that YoloX had the best detection 

performance at the detection stage, with a mAP of 95.58% 

for photos of rice illness. Siamese Network outperformed 

other models in the identification step, with an 

identification accuracy of 99.03%. [14] 

 

2.1 Traditional Techniques for Rice Disease Detection 

 

The following methods are currently being used by 

knowledgeable phyto-pathologists to recognise different 

rice diseases: 

● Visual method: determining the disease's external 

signs, stage of growth, and frequency. 

● Microscopic method: identification of the 

pathogen and its sporulation, as well as the type of 

changes occurring in diseased plant tissue. 

● Biological methods: Artificial infection ; VNIIF 

guidelines are used to calculate the percentage of 

damage. 

● Cultural method: The fungus is isolated on a 

nutritional medium using the and its morphological 

and cultural characteristics are studied. 

● Molecular genetic method: Using polymerase 

chain reaction, diagnose rust fungi using 

molecular genetics. 

 

Because substituting the human eye and a professional 

phytopathologist by a computer algorithm is likely the 

simplest method to adapt it to modern machine learning 

techniques. Neural network techniques outperformed all 

other machine learning algorithms tested for equivalent 

tasks. They enable one to quickly determine whether an 

illness is present in the picture. Convolutional neural 

networks have established one another as the state-of- the-

art for recognising digits. Convolutional neural networks 

have recently actually replaced additional neural network 

designs as the primary method employed in machine 

vision to solve issues related to classification, 

identification, and division of objects on images. Let's 

quickly go over the fundamental concepts and methods 

employed by neural networks, as well as some of the 

factors that contribute to their effectiveness. 
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2.2 Convolutional Neural Networks: An Overview 

 

Contemporary computer vision approaches using neural 

network algorithms have proven the greatest efficiency of 

all learning algorithms utilized for similar applications. 

They allow you to swiftly identify whether or not an 

ailment exists in the image. CNNs, on the other hand, have 

been shown to be the most advanced neural network 

designs for number recognition. CNNs have lately 

replaced categorization, detection, and segment of objects 

on pictures as the dominant technique in computer vision.  

Let's quickly go over the fundamental concepts and 

methods employed by neural networks, as well as some of 

the factors that contribute to their effectiveness. 

 

The primary goal of CNNs is to simulate the mechanism of 

human vision as closely as possible. Only a select few of 

the connections between neurons in the network's 

neighbouring layers need to be used; not all of them. The 

simplest explanation of how vision works is when an eye 

sequentially focuses on different areas of an image rather 

than the entire thing at once in an effort to find any object 

within it .By layering identical convolution processes in 

various ways, one can create distinct CNN architectures. It 

now serves as a strong basis for contemporary computer 

vision and aids in the effective resolution of a variety of 

issues, including categorization, clustering, segmentation, 

and other issues. 

 

 

 

 

After that, AlexNet was presented. With a test accuracy of 

84.6%, it triumphed in the ImageNet 2012 competition. 

About 1.2 million training images were needed in total for 

classification.CNNs have emerged as cutting-edge 

algorithms for working with large colour images, capable of 

detecting a variety of patterns and shapes on them, thanks 

to the development of AlexNet. Thanks to the use of 

numerous parameters and tiny convolution kernels, 

ImageNet was 92.7% accurate. Convolutional designs had 

undeniable results by 2013. However, unlike LeNet, this 

success was primarily attributed to quantitative 

advancements and increased computing power rather than 

novel concepts. The total number of variables in networks 

has grown from a few thousand to hundreds of millions, 

rendering training them difficult, time-consuming, and 

expensive. At the time, it was still unclear if the 

instrument's intricacy was justified by how intricate the 

problem was, or whether innovative methodologies were 

required, as in the instance of classic neural networks. 

Google introduced their GoogLeNet Inception architecture 

in 2014, which won the ImageNet contest with 93.3% test 

accuracy, providing another major breakthrough to 

computer vision. The network only had 6M parameters, 

which is more than 20 less than VGG-16 and roughly 10 

times less than AlexNet. The use of special inception 

blocks that concatenate convolutions of different sizes was 

a progressive idea that allowed for a significant reduction in 

the number of parameters and an improvement in the 

accuracy of predictions. This made it possible for the 

algorithm to recognise details at various scales right away 

and determine which one is most important for a particular 

image. The designs of SqueezeNet and DenseNet are also 

noteworthy. SqueezeNet has surpassed AlexNet in terms of 

quality, despite having 50 times fewer parameters. The 

number of input channels in each layer was decreased by 

using 11 convolutions and shrunk larger convolution 

kernels. ResNet and DenseNet both followed the same 

qualitative progression, though DenseNet concatenated the 

earlier layers with the later ones rather than summarizing 

them. As a consequence, we achieve quicker convergence 

and a small improvement in quality with a 7M parameter 

set similar to Google Neural Network. 

 

2.3 Dataset Description 

 

Like any supervised machine learning method, training a 

neural network requires a decent training set. The hardest 

part of the job is typically gathering properly 

preprocessed training data because it necessitates thorough 

analysis from the viewpoints of both the company and the 

product's end users. It is specifically stated that difficulties 

can be reflected by different lighting issues, photo noise, 

and inadequate illness severity. 

 

It is necessary to know exactly how the learned neural 

network will be put to use after that. In particular, the 

following criteria should be established before labor starts: 

(1) general photographic circumstances, (2) shooting 

aspect, (3) contrast and brightness levels, (4) potential 

noise and distortion, (5) lighting issues, and (6) backdrop 

impact.The finished neural network's quality can be 

improved by setting photographic restrictions and 

requiring users to abide by them. Otherwise, no program 

can ensure the training precision for validation. 

 

In this study, we make use of the dataset while slightly 

extending it with information that is publicly accessible 

online. We do not include maize hispa illness because it is 

unimportant for southern Russia. Finally, we employ a 

collection of 4,278 pictures, including 1,488 images of 

healthy individuals, 1,195 images of brown spot disease, 

and 1,595 images of leaf blast disease. 

 

It should be noted that a single rice stalk can have 

multiple illnesses on it at once. Multiclass categorization 

is the job at hand in this situation. However, the 

information is rigorously marked, and its visual analysis 

supports this. Therefore, in this study, we take into 

account the scenario of a rigid multiclass classification: 
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only one illness per leaf. 

 

Practically speaking, this means that even a perfect 

model will probably have an upper accuracy limit that is 

lower than 100% that it cannot beyond without 

retraining. In this study, we demonstrate that, even with a 

tight multiclass categorization assumption, a pretty good 

accuracy of up to 96% may be attained on the validation 

set. 

 

Only these examples were used in the ultimate quality 

evaluation of the model's work: wholesome or diseased 

foliage explosion. These kinds of tests are crucial 

because the distribution of the dataset used to train the 

model can frequently be different from the distribution to 

which it will finally be applied. It is important to 

understand how robust the model suggested in this work 

is to distributional changes as machine learning methods 

are typically fairly sensitive to them. 

 

2.4 Data Preprocessing 

 

 

But even when gathering data and using a trained model 

while keeping an eye on the shooting circumstances and 

quality, a number of basic issues may come up that 

seriously harm the model's performance. Among them 

are the following: 

 

 inadequate sample size 

 natural rotation/image reflection invariance of 

forecasts 

 volatility of predictions, where even negligible 

noise can alter the outcome; 

the result of overfitting, which occurs when forecasts 

made on fresh images turn out to be considerably less 

accurate than those made on training data. 

 

By planning good preprocessing of the initial pictures, all 

these issues can be addressed to a certain degree. For the 

initial sample, we use the preparation steps listed below: 

● Random angle rotation from 0° to 45° 

● Flip a picture along its primary axes. 

● RGB picture channel normalization is a standard 

procedure. 

The size of the training sample grows as a consequence, 

improving prediction stability and guaranteeing their 

invariance to picture rotations. 

 

 

 

 

 

 

 

 

 

 

2.5 Model Architectures 

 

The categorical cross-entropy function, which is usual for 

multiclass classification issues, has been selected as the 

primary function. It can be written as (where ynk - ground 

truth responses (1 or 0), and pnk - softmax model 

predictions, which rely on model weights w. This applies 

to our situation of three classes. Since it has a 

straightforward probabilistic meaning and severely 

penalizes the model for wrong responses due to the 

logarithm, this loss function is the most appropriate for 

categorization tasks. 

 

With PyTorch v1.6.0, a machine learning library built on 

the Torch library, we can train and use contemporary 

neural network architectures with all the required 

features. This framework's ease and extensive features 

make it very popular. However, the aforementioned 

architectures are quite well-liked, and you can find 

versions of them on any other platform, such as 

TensorFlow, Caffe, etc. The neural network was taught 

using the following setup on a fixed computer: GeForce 

GTX 1650 ti 4 GB, Ryzen 5. 

 

The lighter designs that, if required, can be used 

immediately from a mobile device were the main 

emphasis of this effort. Using the PyTorch architecture 

and pre-trained models from the torchvision module, we 

fully adjusted the models for the aforementioned dataset. 

We looked at several CNN designs, both traditional and 

contemporary, and selected the following: SqueezeNeq- 

1.0, DenseNet-121, ResNet-18, and GoogleNet. They are 

the most compact while also producing the most hopeful 

outcomes. Thus, computationally demanding models like 

VGG and AlexNet, for instance, produced outcomes 

somewhat worse than those presented below and needing 

significantly more processing power both during training 

and prediction. 

 

With only a few settings, DenseNet-121 had the greatest 

precision and stabilized in the quickest amount of time 

(roughly 14 epochs). The GooLeNet design came in 

second place, settling a little more slowly. ResNet-18 

finished third in precision, but it already has a lot more 

factors than the other two. SqueezeNet-1.0's design is 

something that deserves particular attention. It wasn't 

significantly worse than the others, displayed comparable 

accuracy findings, stabilized fast, and had the fewest 

parameters—roughly 750K. 
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III. RESULT 

 

 

 

 

The end quality measures for the models under evaluation 

are shown in Fig. 2 and include accuracy, micro and macro 

averaged f1, precision, and recall. It is apparent that 

DenseNet-121 excels in every trait. GoogleNet and 

SqueezeNet are the following. In this instance, the 

heavyweight ResNet design proves to be inferior to the 

others. 

 

 

The one-vs.-all ROC curves for each class are shown in 

Figure 3 and were constructed using the validation data 

and forecasts from the top DenseNet model. Each and 

every ROC-AUC value is very near 1. GoogLeNet 

performs marginally better at forecasting the existence of 

an illness, but it can mistake a brown spot for a leaf blast, 

according to a deeper examination of the algorithms' 

mistakes. The overall findings for the ResNet and 

SqueezeNet architectures are comparable. Only a tiny 

portion of the diseased plants are detected by even the 

most accurate DenseNet design, which precisely identifies 

the remaining instances. (see Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

 

Convolutional neural network contrasts between various 

traditional and modern forms show how well these methods 

can address the problem. The best results were obtained by 

the DenseNet-121 construction, which achieved a precision 

of 95.57% on the given dataset. Furthermore, this design 

displayed the quickest stabilization to values near to the 

optimum in only 10-20 epochs. We contend that by 

effectively managing the data collection and early detection 

systems, the issue of contracting rice fungal infections may 

be successfully addressed. Furthermore, it is demonstrated 

that such models may be trained without requiring a 

significant amount of processing resources. The final 

proposal could occasionally be used on mobile devices with 

low computational power needs due to its delicate nature. 
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