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Abstract— The literature on applying machine learning 

(ML) approaches to the control and monitoring of electric 

machine drives is methodically summarized in this review 

paper. The rapid advancement of specialized embedded 

hardware platforms and learning algorithms is expected to 

make machine learning (ML)-based data-driven approaches 

common tools for automated high-performance control and 

monitoring of electric drives. This article also offers some 

perspectives on how to encourage its broad implementation in 

the industry, with an emphasis on ML algorithm deployment 

on embedded system-on-chip field-programmable gate array 

devices. 

Keywords— Field-programmable gate arrays (FPGAs), 

embedded systems, artificial intelligence (AI), deep learning, 

power electronics, machine learning (ML), and reinforcement 
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I. INTRODUCTION  

After the first back propagation paper was published in 1986, 

the motor control community has been well-informed about 

the rapid advancements in machine learning (ML) [1]. The 

work that was done three years later to train an offline neural 

network to simulate the actions of hysteresis current 

controllers in a three-phase pulsewidth modulation (PWM) 

inverter [2] provides clear evidence of this. A number of 

groundbreaking studies on general voltage-fed ac machines 

[3], [4], induction machines [5], [6], [7], [8], [9], [10], [11], 

[12], [13], [14], and [15], dc machines [16], [17], 

synchronous machines [18], and switching reluctance 

machines [19] were conducted in the early 1990s in response 

to this work. In addition to the widespread interest in using 

machine learning (ML) for motor drive control, these 

technologies—classification and regression in particular—

have also been used in various types of electric machines' 

condition monitoring and fault diagnosis [20], [21], [22], 

[23], [24], [25], [26], and [27].Around that time, ML models 

like emerged, and the field of power electronics began to 

progressively advance. In power electronics and motor 

drives, neural networks have emerged as the key field for 

complicated system identification, control, and estimate [28]. 

Nevertheless, it was also determined that "industrial 

applications of neural networks in power electronics appear 

to be very few at the moment, despite the advancement of 

technology" [29]. 

II. ML ALGORITHEMS 

A. Supervised Learning 

One machine learning job that entails building models to 

map input and output data is supervised learning. When 

labeled data is used to train models for classification or 

regression issues, the process is referred to as "supervised." 

ANN, support vector machines, and ordinary least squares 

(OLS) are a few of the most popular supervised learning 

algorithms. These algorithms have been widely used for the 

estimation of models or model parameters related to electric 

machine drives, as well as for the control and monitoring of 

the drives, as will be covered in following sections. 

B. Unsupervised Learning 

An algorithm known as unsupervised learning analyzes and 

interprets data only on the basis of input. Unsupervised 

learning classic problems include anomaly detection, 

dimensionality reduction, and clustering. Unsupervised 

learning methods, in contrast to supervised learning, rely on 

the data's intrinsic structure to be discovered. Feature 

engineering for supervised learning can also be applied 

using unsupervised learning as a supplementary 

preprocessing step [80]. 

III. SCOPE 

This article aims to give a thorough review of the 
literature that uses machine learning approaches to electric 
machine drives, spanning from the 1980s to the current state 
of the art. The field of electric machine drives has made 
extensive use of classical artificial intelligence (AI) 
techniques, such as expert systems [81], fuzzy logic systems 
[6], [82], [83], [84], [85], [86], [87], [88], [89], [90], and 
evolutionary algorithms [83], [91], [92], [93], [94], [95], 
[96]. However, the authors humbly believe that AI is not 
used here by definition because standard procedures pale in 
comparison to the state-of-the-art research in AI computer 
science.  

Additionally, the generated algorithms don't fit the 
conventional notions of "intelligence," which model 
"cognitive" abilities like perception, attention, memory, and 
language processing [97]. Consequently, even though some 
authors have used the word "AI" in the names of their 
articles, "machine learning" will be used for the remainder of 
this article. 
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IV. IMPLEMENTING ML-BASED ELECTRIC MACHINE DRIVES IN 

EMBEDDED SYSTEMS 

A. Brief History Of Embedded Systems For Electric Machine 

Drives 

Additionally, two model reference adaptive speed neural 
controllers were implemented in [213] and [214] using x86 
microcomputers at a sampling rate of just 500 Hz. The low 
sampling rate of the controllers remained hindered them, 
even if they were demonstrated to compare favorably against 
the benchmark PI controllers during transients [214]. 
Additionally, the authors of the example research in [215] 
and [216] used a Texas Instruments TMS320C30 DSP to 
perform the remaining indirect FOC control and an ANN-
based current controller. 

B. Selecting Appropriate Embedded Systems for Ml-Based 

Electric Machine Drives 

The highest allowable computation time for each control 

loop is tc = 25 μs to tc = 100 μs. This is because the control 

frequency for ML-based high-performance electric machine 

drives is generally in the range of 10–40 kHz, necessitating 

ultralow latency in the order of microseconds. The available 

time for the inference of deep neural networks must always 

be less than a whole control cycle, excluding the time 

required for ADC sampling, signal scaling/filtering, 

software-based protection logic, and other tasks. In addition, 

machine drives will have to communicate with a wide 

variety of sensor types in order to effectively estimate, 

regulate, and monitor electric machines for various industrial 

uses. 

C. Implementing Ml-Based Motor Control In Fpgas 

A condensed illustration of using an ML-based motor 

control algorithm on a dual-core reconfigurable SoC is 

provided in Figure 1.Initially, the measurements are 

processed by digital filters built into the FPGA after being 

read from the ADCs. Following that, neural network 

inference is carried out in 

 

 

 
FIGURE 1: SoC construction based on FPGA for machine learning model 

inference in motor control applications. Taken from [244]. 

the FPGA in order to calculate the present state x(k). The 

reference instruction (position, velocity, or torque) yref(k) is 

provided by an outside control loop operating on ARM Core 

0. The integrated advanced extensible interface (AXI) is 

responsible for implementing the interface between Core 0 

and FPGA. Tasks like data logging, interacting with other 

users and systems, and initializing the FPGA—which 

includes libraries, tenants, the real-time operating system, 

drivers, and application programming interfaces—can also 

be coded into ARM Core 1. 

 

 
 

FIGURE 2. Xilinx's open-source PYNQ project offers a foundation for quick 

prototyping and development together with an intuitive software interface 
[250]. 

 

is enormously complicated [249], and this constraint only 

gets worse when deploying machine learning algorithms 

with deep structures and plenty of parameters. into fully 

optimized parallel hardware designs. Fortunately, there are a 

number of tools and tailored settings to make this process go 

more quickly than having to start from scratch. We will 

demonstrate many possible approaches to using an FPGA-

based, trained machine learning controller for electric 

motors. 

 

I. Pynq—Python Productivity For Zynq 

 

By utilizing the Python language and associated libraries, 

Xilinx's PYNQ open-source initiative seeks to make using 

Xilinx platforms easier [250]. The PYNQ platform lowers 

the entrance barrier for individuals with little expertise in 

hardware design and increases the productivity of designers 

who are already familiar with Zynq, Zynq UltraScale+, 

Zynq RFSoC, and Alveo accelerator boards. 

 

II. Matlab Hdl Coder And Xilinx System Generator 

(Xsg) 

The programming of Xilinx, Microsemi, and Intel 
FPGAs may be automated with the help of HDL Coder's 
workflow adviser [256]. In particular, it can produce over 
300 HDL-ready Simulink blocks, MATLAB functions, and 
Stateflow charts into portable synthesizable Verilog and 
VHDL code. Programming FPGAs at a high degree of 
abstraction for machine learning (ML)-based motor control 
applications is possible using HDL Coder. The resulting 
HDL code can be imported and compiled into customized 
intellectual property (IP) cores using Xilinx Vivado Design 
Suite or Intel Quartus. 

 

FIGURE 03:A system with an integrated DPU is shown in [258]. 

High-level integration of different IP blocks made with 
the MATLAB/Simulink graphical interface is provided, 
along with description languages like Verilog and VHDL. 
Furthermore, the Simulink toolkit makes debugging and 
testing of HDL designs simple and adaptable. When 
compared to skilled FPGA designers, these toolboxes' 
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performance and resource use could not produce the best 
design. 

III. Deep Learning Processor Unit (Dpu) 

 
Along with its high-level synthesis (HLS) tool, which 

assembles deep learning C/C++ code for PL in the hardware, 
Xilinx has also built the DPU IP core [257]. With direct 
connections to the PS, the DPU may be implemented into the 
PL of certain Zynq-7000 SoC, Zynq UltraScale+ MPSoC, 
and Versal AI edge devices. This DPU, which consists of the 
register configuration module, data controller module, and 
convolution computation module, is specifically a 
programmable engine designed for CNNs.  

It should be mentioned, nonetheless, that Lillicrap et al. 
[259] analyze picture data where CNNs excel since they 
learn from raw pixels. As was previously mentioned, electric 
machine drives handle data using a whole different data 
format than CNNs. Given the high cost of computation, it is 
unknown how well CNNs will work with low-cost 
embedded systems like FPGAs for low-dimensional control 
tasks, such as electric motors. However, we can still make 
use of this DPU IP core if CNNs are chosen to perform 
certain motor control tasks by utilizing its included 
convolutional layers and combining them with additional 
neural network layers created in bespoke IP cores. 

 

or “Magnetization {A[m(1)]}”, not just “A/m”. Do not 
label axes with a ratio of quantities and units. For example, 
write “Temperature (K)”, not “Temperature/K”. 
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A. Developmental Endeavor 

Even while FPGAs can provide improved connection, 
flexibility, and energy economy, one of the main drawbacks 
of utilizing FPGAs is the technical work necessary for 
creation. Developing FPGAs necessitates both software 
engineering and hardware configuration expertise, in contrast 
to developing GPUs, which solely requires software 
engineering expertise. Even for experienced FPGA 
engineers, manual design techniques are particularly time-
consuming due to the complexity of implementing ML 
models on FPGAs. 

To allow fast and effective training of RL control on 
FPGAs, therefore, an automated design workflow from the 
RL's neural network architecture to the hardware design is 
required (i.e., not just for policy inference but also for online 
policy learning). Without requiring in-depth understanding of 
hardware design, researchers and engineers may swiftly 
construct a variety of machine learning models for motor 
control applications by developing an efficient automated 
design approach. 

B. The application's exertion 

Because machine learning is data-hungry, it usually 
requires expensive and time-consuming individual test bench 
training for every drive system. Therefore, for industrial 
mass production utilization, the ability to quickly transfer an 
ML approach between multiple applications is a problem. It 
is possible to address this problem from a hardware and 
software standpoint. Certain machine learning algorithms are 
specifically created to facilitate transfer learning with robust 
domain adaption capabilities in software words. 
Furthermore, an HIL environment may simulate the 

hardware platform of many electric drive systems, which 
facilitates the collection of sufficient simulated data for the 
training of machine learning models for any industrial 
application. 

C. Security  

As machine learning is inherently stochastic, its output 
need to be regarded as stochastic as well. Consequently, an 
ML model's intrinsic chance of failure might lead to issues if 
an ML approach generates outliers for control or estimating 
purposes. Therefore, adverse effects on mechatronic systems' 
behaviors might jeopardize their chances in applications 
where safety is crucial. 

D. Readability 

ML models are extremely intricate and challenging to 
comprehend or describe. As mentioned in [227], for 
example, a new machine learning model suggested for 
electric motor applications may have almost 10,000 
parameters. Furthermore, millions or billions of parameters 
may be present in commercially available machine learning 
models used for tasks like image identification or natural 
language processing. While inter- pretability alone cannot 
ensure safety, it is essential for tracking functional safety and 
identifying model failure points. Therefore, before ML 
models are commercially used in driving applications, more 
thorough research into their interpretability and explain 
ability is required. 

It is expected that the ML-based data-driven control and 
monitoring schemes would be able to give unmatched 
performance in terms of quick exploration and domain 
adaptation after many of the practical challenges outlined 
above have been resolved. As a result, they have a strong 
chance of replacing current electric machine drive 
technology with next-generation low-cost microcontrollers 
now employ model-driven techniques. 
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