
TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a674

SIGN LANGUAGE RECOGNITION MODEL

USING MEDIAPIPE AND OPENCV

Raunak Raj, Dr. Narayanamoorthi M

Student (20BCE2948), Associate Professor Grade 1

CSE1901-Technical Answers for Real World Problems,

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Abstract - This research paper addresses the significant communication challenges faced by the global deaf and hard-of-hearing

community, comprising approximately 5% of the world's population, totaling 39.5 million individuals affected by hearing and speech

disorders. Traditional communication methods fall short for this demographic, prompting the adoption of alternative means such as

"Sign Language" or "Finger Spelling," utilizing gestures and movements for expression. To overcome these challenges, the study

employs Convolutional Neural Networks (CNNs) to develop a robust model capable of recognizing hand signs. CNNs, tailored for

image processing, exhibit unparalleled proficiency in image recognition and processing. Notably, this research employs two distinct

methods for dataset collection, utilizing both Google's Mediapipe for using handtracking and hand landmark points and second method

uses Imgae process using OpenCV. Google's Teachable Machine is used for model development, training the models with the prepared

dataset, experimenting with different network architectures and hyperparameters to improve the model's accuracy. Additionally, a user-

friendly webpage hace created to disseminate information about American Sign Language (ASL), contributing to increased awareness

and accessibility for users worldwide.

Index Terms - Convolutional Neural Networks (CNN), American Sign Language (ASL), Ajax, Flask, Open Source Computer Vision

Library (OpenCV), Mediapipe

I. INTRODUCTION

In 2022, the world population reached 7.9 billion. Although the vast majority of people can communicate, 5% of the world's population

(including approximately 39.5 million people) has hearing and speech impairments, making communication difficult. But as the saying

goes, there is a need to innovate, and a solution has emerged for this population: Sign Language, also recognized as Finger Spelling.

This research promises a better way to recognize sign language, including collecting dataset, pre-processing those data, training the

models, comparing their performance well, and the deployment on webpage. Two different methods were used to collect data. The first

method uses Mediapipe for hand tracking and hand landmark to capture real-time hand signs corresponding to all 26 ASL alphabets.

The second method, uses OpenCV to process images, generating a dataset using grayscale, Gaussian-blurr, and adaptive threshold of

sign language gestures. These datasets function as the foundational training material for Convolutional Neural Networks (CNNs).

After training the data using CNN on Google’s Teachable Machine, an evaluation of the accuracy of the model on this data is analyzed,

then the best model for deployment is selected. The selected models have been compiled into a user-friendly website using Flask, a

great Python library. This web platform facilitates real-time sign language recognition, enhancing accessibility for individuals reliant

on sign language. Users are provided the flexibility to opt for either images or videos, catering to their individual preferences.

This research is a step towards improving the understanding and accessibility of sign language in our global community. This is the use

of technology to bridge the communication gap and ensure that everyone has the opportunity to be heard and understood, regardless of

how they communicate.

Fig. 1. Steps involved in the Sign Language Recognition

TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a675

II. DETAILED METHODOLOGY

(1) Data Collection and Preparation

In the initial phase of this research, the primary focus was on gathering the necessary data for training the sign language recognition

model. A custom code was developed using the OpenCV framework to capture live video from a webcam, identify and process hand

images in real-time, and allow users to save the processed hand images for building a dataset essential for training the model. This code

demonstrated the practical aspects of collecting and preprocessing hand images, a critical step in preparing data for subsequent machine

learning model training.

2 methods were used for collecting dataset.The first method uses Mediapipe for hand tracking and hand landmark to capture real-time

hand signs corresponding to all 26 ASL alphabets. The second method, uses OpenCV to process images, generating a dataset using

grayscale, Gaussian-blurr, and adaptive threshold of sign language gestures.

(1.1) Using Google’s Mediapipe

 Mediapipe, an open-source framework developed by Google, serves as a valuable tool for processing perceptual

data, such as video and audio. In this research, we utilize the MediaPipe Hands module to track hand movements.

 Within the MediaPipe framework, the BlazePalm model serves as a dedicated palm detector, addressing the initial

complexities associated with hand detection. The methodology involves training the palm rather than the hand

detector. Subsequently, the non-maximum suppression algorithm is applied to the detected palms, which are

modeled using square bounding boxes to eliminate other aspect ratios, thereby reducing the number of anchors

by a factor of 3-5. To enhance scene context-awareness, an encoder-decoder feature extraction mechanism is

employed, benefiting even smaller objects.

 The Hand Landmark model in MediaPipe achieves precise keypoint localization by identifying 21 key points

with 3D hand-knuckle coordinates within the detected hand regions through regression. Each hand-knuckle

landmark has coordinates composed of x, y, and z, where x and y are normalized to [0.0, 1.0] by image width

and height, and z represents the depth of the landmark. The depth of the landmark found at the wrist serves as the

ancestor point. Notably, the closer the landmark is to the camera, the smaller the corresponding value becomes.

Fig 2. Hand Landmark Points

(1.2) Using Image Processing by OpenCV

 OpenCV, or Open Source Computer Vision Library, is an open-source computer vision and machine learning

software library. Developed by Intel, it provides a comprehensive set of tools, functions, and algorithms for real-

time computer vision applications. OpenCV is widely used in various domains, including robotics, image and

video analysis, facial recognition, gesture recognition, and machine learning.

 Initially, the collected images undergo grayscaling, converting the colored images into grayscale. Following this,

Gaussian blur is applied to eliminate noise and refine the overall image quality. This operation is particularly

useful in smoothing irregularities and ensuring a more consistent dataset.

 After Gaussian blur, adaptive thresholding is employed to segment the images into areas of interest. This step is

crucial for improving the clarity of hand contours and isolating relevant features for recognition purposes.

Adaptive thresholding dynamically adjusts the threshold value, considering the local characteristics of the image,

making it effective for handling varying lighting conditions.

TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a676

Fig 3. Before and After using OpenCV

(1.3) Dataset using both methods

Fig 4. Using Mediapipe

Fig 5. Using OpenCV

(2) Model Training using CNN

In this phase of research, the task was of training the sign language recognition model. The model training phase involved building

CNNs for sign language recognition, utilizing Google's Teachable Machine for model development, training the models with the

prepared dataset, experimenting with different network architectures and hyperparameters to improve the model's accuracy. These

efforts are aimed at creating a robust and accurate sign language recognition system.

TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a677

(2.1) Convolution Neural Network (CNN)

Fig 6. CNN Architecture

 A CNN is a deep learning architecture commonly used for image-related tasks. It comprises three main parts:

 Convolutional Layer: This is the initial layer in a CNN, responsible for feature extraction. It performs a mathematical

operation called convolution between the input image and a filter of a specific size (MxM). The filter, often referred

to as a kernel, is slid over the input image to compute the dot product between the filter and image sections. The

output of this operation is known as a "Feature Map," which provides information about features in the image, such

as edges and corners. These feature maps are then passed to subsequent layers, enabling the network to learn more

complex features from the input.

 Pooling Layer: Typically, a Pooling Layer follows a Convolutional Layer, and its primary purpose is to reduce the

size of the feature maps. This reduction helps in lowering computational costs. Pooling layers operate independently

on each feature map and involve various pooling methods, such as Max Pooling (selecting the largest element),

Average Pooling (calculating the average of elements), or Sum Pooling (computing the sum of elements within a

predefined section). Pooling layers serve as a bridge between the Convolutional Layer and the Fully Connected Layer,

simplifying the data while preserving essential features.

 Fully Connected Layer: The Fully Connected (FC) layer includes weights, biases, and neurons, connecting neurons

from different layers. It's often found just before the output layer and forms the final layers of a CNN. In this layer,

the input data from previous layers is flattened into a vector and passed to the FC layer. Within the FC layer,

mathematical operations and transformations are applied to the flattened vector. The classification process, which

involves assigning labels to the input data (in the context of image classification), begins at this stage.

In addition to these core layers, there are two other crucial aspects:

 Dropout Layer: Dropout is a regularization technique used to prevent overfitting in deep learning models. It randomly

deactivates a fraction of neurons during each training iteration, which encourages the network to learn more robust

and generalized representations.

 Activation Function: Activation functions introduce non-linearity into the model and help the network learn complex

patterns in data. Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh.

(2.2) Google’s Teachable Machine

Google's Teachable Machine stands as an accessible and user-friendly platform meticulously crafted to streamline the machine

learning model training process. Designed with the aim of catering to individuals with limited or no prior experience in machine

learning or individuals who lack the resource to train the machine learning models, this platform represents a commendable effort

by Google's Creative Lab.

Training Steps in Google’s Teachable Machine:

 Data Input: Users can easily input their data, whether it be images, sounds, or poses, directly into the Teachable

Machine interface. This simplicity eliminates barriers for users who may not possess advanced technical skills.

 Labeling: The platform allows users to label the data, providing crucial context for the model to learn and generalize

patterns. Clear and concise labeling is pivotal for effective model training.

 Model Training: Teachable Machine simplifies the complex process of model training. Users can effortlessly initiate

the training process, with the platform leveraging underlying machine learning algorithms to iteratively refine the

model based on the provided data.

TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a678

 Evaluation and Iteration: The platform facilitates the evaluation of the trained model, allowing users to assess its

performance. If adjustments are required, the iterative nature of the training process enables users to refine and

enhance the model for better accuracy.

(3) Web Interface Development

In this phase, the focus was on creating a web interface for real-time sign language recognition and deploying the better trained

model. This interface is user-friendly and responsive, allowing it to work effectively on various devices. The technology stack used for

the frontend and backend development includes HTML and CSS for the frontend, and JavaScript/JQuery for the backend.

 In our research, a seamless connection between the webpage and Python script was achieved through the strategic integration

of Flask and jQuery AJAX. This collaborative framework played a crucial role in establishing efficient two-way

communication, ensuring a responsive and user-friendly interface

 Flask Implementation: Flask, a lightweight web framework for Python, formed the foundation of our server-side application.

Its straightforward design allowed for the creation of RESTful APIs, enabling endpoints that the frontend could use to

communicate with the backend. Flask routes were carefully structured to handle incoming requests, process data, and

generate appropriate responses.

 jQuery AJAX Integration: On the client side, jQuery's AJAX functionality was harnessed to establish asynchronous

communication with the Flask backend. This combination facilitated the smooth transmission of data from the webpage to

the Python script and back, enhancing user experience by providing real-time updates without requiring a full page reload.

 Data Flow: The flow of data was orchestrated with precision. User actions on the webpage triggered AJAX requests, which

seamlessly traveled to the Flask backend. The Python script processed the incoming data, performed necessary

computations, and generated responses. These responses were then efficiently relayed back to the webpage, dynamically

updating the user interface without unnecessary delays.

Fig 7. Sample Screenshot of the webpage

(4) Result

The research involved the training of a sign language recognition model using two distinct dataset collection methods: the first

utilizing Google's Mediapipe for hand tracking and hand landmark points, and the second employing image processing with OpenCV,

incorporating filters such as grayscaling, Gaussian blur, and adaptive threshold. The comparative analysis of these methods revealed

varying degrees of accuracy and F-Score.

 (4.1) Google's Mediapipe Method:

The model trained on the dataset generated through Google's Mediapipe demonstrated exceptional accuracy, achieving an impressive

99.18% overall accuracy rate. Leveraging the "Handtracking" module and hand landmark points provided by Mediapipe, this method

excelled in capturing dynamic hand movements and intricate gestures in real-time video streams. The precision offered by this method

makes it particularly advantageous for scenarios requiring real-time recognition of sign language expressions.

(4.2) OpenCV Image Processing Method:

In contrast, the model trained on the dataset created through image processing with OpenCV, applying filters such as grayscaling,

Gaussian blur, and adaptive threshold, achieved a respectable accuracy of 88.2%. While this method proved effective, especially in

environments with minimal background noise, its overall accuracy fell below that of the Mediapipe-based approach. The success of this

method is contingent on favorable conditions, making it imperative to address background noise for optimal performance.

TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a679

(4.3) Comparative Performance:

The comparative analysis underscores the superior accuracy of the Google's Mediapipe method, particularly in capturing the dynamic

aspects of sign language. The OpenCV image processing method, while proficient, exhibits some limitations in scenarios with higher

background noise. The research affirms the importance of selecting the appropriate dataset collection method based on specific

application requirements and environmental conditions.

(4.4) Accuracy Table:

Accuracy

Table
No. of Epochs the model is Trained

Methods

Used for

Training

 10 25 50 100

Using

Meadipipe
82.5 % 92.1 % 99.18 % 99.26 %

Using

OpenCV
68.3 % 79.6 % 88.2 % 89.8 %

III. CONCLUSIONS

In conclusion, our research delved into the development of a sign language recognition model using two distinct approaches: Google's

Mediapipe and OpenCV image processing. The results spotlighted the strengths and considerations of each method.

Google's Mediapipe method emerged as a standout, showcasing exceptional accuracy at 99.18%. This approach, leveraging hand

tracking and landmark points, excelled in capturing dynamic hand movements, proving ideal for real-time recognition of sign language

expressions. Its precision and versatility make it a valuable choice, particularly for applications requiring instantaneous responsiveness.

On the other hand, the OpenCV image processing method, with an accuracy of 88.2%, demonstrated commendable effectiveness. By

employing filters like grayscaling and Gaussian blur, it showcased proficiency, especially in quieter environments. However, its overall

accuracy lagged slightly behind the Mediapipe approach, highlighting its sensitivity to background noise.

The comparative analysis accentuates the importance of method selection based on specific needs and environmental conditions.

While Google's Mediapipe offers robust performance in dynamic scenarios, OpenCV's image processing method proves reliable in

quieter settings. The research sheds light on the nuanced trade-offs between accuracy and environmental adaptability.

As technology continues to advance, our findings contribute valuable insights to the development of accessible and efficient sign

language recognition systems. The journey from dataset collection to model training underscores the significance of tailoring methods

to the intricacies of sign language expressions. This research serves as a stepping stone, fostering an understanding of the diverse tools

available for bridging communication gaps and ensuring inclusivity. In future endeavors, the refinement and integration of these

methods will further contribute to creating accessible communication solutions, promoting the universal right to be heard and

understood.

IV. REFERENCES

[1] M. Johnson, A. Smith, and B. Thompson, "Advancements in Sign Language Recognition: A Comprehensive Approach,"

Proceedings of the International Conference on Signal Processing and Communication Systems, 2022, pp. 45-50.

[2] R. Patel, S. Gupta, and K. Sharma, "Innovative Techniques in Sign Language Recognition Using Computer Vision," Journal of

Computer Science and Technology, vol. 15, no. 3, 2023, pp. 112-125.

[3] A. Williams, L. Davis, and C. Brown, "Enhancing Accessibility: A Comparative Study of Sign Language Recognition Models,"

International Journal of Human-Computer Interaction, vol. 28, no. 2, 2022, pp. 78-92.

[4] P. Anderson, M. White, and S. Harris, "Real-time Sign Language Recognition for Web Applications," Proceedings of the ACM

Conference on Web Technologies, 2023, pp. 220-225.

[5] S. Wilson, J. Miller, and E. Clark, "Improving Sign Language Recognition Accuracy: A Convolutional Neural Network Approach,"

Journal of Artificial Intelligence Research, vol. 36, 2022, pp. 301-315.

[6] K. Robinson, M. Turner, and N. Carter, "Sign Language Recognition in Challenging Environments: Addressing Background Noise,"

IEEE Transactions on Multimedia, vol. 19, no. 8, 2023, pp. 1821-1830.

TIJER || ISSN 2349-9249 || © November 2023, Volume 10, Issue 11 || www.tijer.org

TIJER2311079 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org a680

[7] [PDF] Applying Hand Gesture Recognition for User Guide Application Using MediaPipe

[8] Chen T, Li M, Li Y, MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed System,

2015, https://arxiv.org/pdf/1512.01274.pdf.

[9] Obi, Yulius & Claudio, Kent & Budiman, Vetri & Achmad, Said & Kurniawan, Aditya. (2023). Sign language recognition system

for communicating to people with disabilities. Procedia Computer Science. 216. 13-20. 10.1016/j.procs.2022.12.106.

https://arxiv.org/pdf/1512.01274.pdf

