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Abstract - This research paper addresses the significant communication challenges faced by the global deaf and hard-of-hearing 

community, comprising approximately 5% of the world's population, totaling 39.5 million individuals affected by hearing and speech 

disorders. Traditional communication methods fall short for this demographic, prompting the adoption of alternative means such as 

"Sign Language" or "Finger Spelling," utilizing gestures and movements for expression. To overcome these challenges, the study 

employs Convolutional Neural Networks (CNNs) to develop a robust model capable of recognizing hand signs. CNNs, tailored for 

image processing, exhibit unparalleled proficiency in image recognition and processing. Notably, this research employs two distinct 

methods for dataset collection, utilizing both Google's Mediapipe for using handtracking and hand landmark points and second method 

uses Imgae process using OpenCV. Google's Teachable Machine is used for model development, training the models with the prepared 

dataset, experimenting with different network architectures and hyperparameters to improve the model's accuracy. Additionally, a user-

friendly webpage hace created to disseminate information about American Sign Language (ASL), contributing to increased awareness 

and accessibility for users worldwide. 

 

Index Terms - Convolutional Neural Networks (CNN), American Sign Language (ASL), Ajax, Flask, Open Source Computer Vision 

Library (OpenCV), Mediapipe 

 

I. INTRODUCTION 

 

 

In 2022, the world population reached 7.9 billion. Although the vast majority of people can communicate, 5% of the world's population 

(including approximately 39.5 million people) has hearing and speech impairments, making communication difficult. But as the saying 

goes, there is a need to innovate, and a solution has emerged for this population: Sign Language, also recognized as Finger Spelling. 

 

This research promises a better way to recognize sign language, including collecting dataset, pre-processing those data, training the 

models, comparing their performance well, and the deployment on webpage. Two different methods were used to collect data. The first 

method uses Mediapipe for hand tracking and hand landmark to capture real-time hand signs corresponding to all 26 ASL alphabets. 

The second method, uses OpenCV to process images, generating a dataset using grayscale, Gaussian-blurr, and adaptive threshold of 

sign language gestures. These datasets function as the foundational training material for Convolutional Neural Networks (CNNs). 

 

After training the data using CNN on Google’s Teachable Machine, an evaluation of the accuracy of the model on this data is analyzed, 

then the best model for deployment is selected. The selected models have been compiled into a user-friendly website using Flask, a 

great Python library. This web platform facilitates real-time sign language recognition, enhancing accessibility for individuals reliant 

on sign language. Users are provided the flexibility to opt for either images or videos, catering to their individual preferences. 

 

This research is a step towards improving the understanding and accessibility of sign language in our global community. This is the use 

of technology to bridge the communication gap and ensure that everyone has the opportunity to be heard and understood, regardless of 

how they communicate. 

 

 
Fig. 1. Steps involved in the Sign Language Recognition 
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II. DETAILED METHODOLOGY 

(1) Data Collection and Preparation  

In the initial phase of this research, the primary focus was on gathering the necessary data for training the sign language recognition 

model. A custom code was developed using the OpenCV framework to capture live video from a webcam, identify and process hand 

images in real-time, and allow users to save the processed hand images for building a dataset essential for training the model. This code 

demonstrated the practical aspects of collecting and preprocessing hand images, a critical step in preparing data for subsequent machine 

learning model training. 

 

2 methods were used for collecting dataset.The first method uses Mediapipe for hand tracking and hand landmark to capture real-time 

hand signs corresponding to all 26 ASL alphabets. The second method, uses OpenCV to process images, generating a dataset using 

grayscale, Gaussian-blurr, and adaptive threshold of sign language gestures. 

 

 

(1.1) Using Google’s Mediapipe 

 

 Mediapipe, an open-source framework developed by Google, serves as a valuable tool for processing perceptual 

data, such as video and audio. In this research, we utilize the MediaPipe Hands module to track hand movements. 

 

 Within the MediaPipe framework, the BlazePalm model serves as a dedicated palm detector, addressing the initial 

complexities associated with hand detection. The methodology involves training the palm rather than the hand 

detector. Subsequently, the non-maximum suppression algorithm is applied to the detected palms, which are 

modeled using square bounding boxes to eliminate other aspect ratios, thereby reducing the number of anchors 

by a factor of 3-5. To enhance scene context-awareness, an encoder-decoder feature extraction mechanism is 

employed, benefiting even smaller objects. 

 

 The Hand Landmark model in MediaPipe achieves precise keypoint localization by identifying 21 key points 

with 3D hand-knuckle coordinates within the detected hand regions through regression. Each hand-knuckle 

landmark has coordinates composed of x, y, and z, where x and y are normalized to [0.0, 1.0] by image width 

and height, and z represents the depth of the landmark. The depth of the landmark found at the wrist serves as the 

ancestor point. Notably, the closer the landmark is to the camera, the smaller the corresponding value becomes. 

 

 

 
Fig 2. Hand Landmark Points 

 

 

 

(1.2) Using Image Processing by OpenCV 

 

 OpenCV, or Open Source Computer Vision Library, is an open-source computer vision and machine learning 

software library. Developed by Intel, it provides a comprehensive set of tools, functions, and algorithms for real-

time computer vision applications. OpenCV is widely used in various domains, including robotics, image and 

video analysis, facial recognition, gesture recognition, and machine learning. 

 

 Initially, the collected images undergo grayscaling, converting the colored images into grayscale. Following this, 

Gaussian blur is applied to eliminate noise and refine the overall image quality. This operation is particularly 

useful in smoothing irregularities and ensuring a more consistent dataset. 

 

 After Gaussian blur, adaptive thresholding is employed to segment the images into areas of interest. This step is 

crucial for improving the clarity of hand contours and isolating relevant features for recognition purposes. 

Adaptive thresholding dynamically adjusts the threshold value, considering the local characteristics of the image, 

making it effective for handling varying lighting conditions. 
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Fig 3. Before and After using OpenCV 

 

 

(1.3) Dataset using both methods 

 

 

 
Fig 4. Using Mediapipe 

 

 

 

 
Fig 5. Using OpenCV 

 

 

(2) Model Training using CNN 

 

In this phase of research, the task was of training the sign language recognition model. The model training phase involved building 

CNNs for sign language recognition, utilizing Google's Teachable Machine for model development, training the models with the 

prepared dataset, experimenting with different network architectures and hyperparameters to improve the model's accuracy. These 

efforts are aimed at creating a robust and accurate sign language recognition system.  
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(2.1)  Convolution Neural Network (CNN) 

 

 
Fig 6. CNN Architecture 

 

 

 A CNN is a deep learning architecture commonly used for image-related tasks. It comprises three main parts: 

 Convolutional Layer: This is the initial layer in a CNN, responsible for feature extraction. It performs a mathematical 

operation called convolution between the input image and a filter of a specific size (MxM). The filter, often referred 

to as a kernel, is slid over the input image to compute the dot product between the filter and image sections. The 

output of this operation is known as a "Feature Map," which provides information about features in the image, such 

as edges and corners. These feature maps are then passed to subsequent layers, enabling the network to learn more 

complex features from the input. 

 

 Pooling Layer: Typically, a Pooling Layer follows a Convolutional Layer, and its primary purpose is to reduce the 

size of the feature maps. This reduction helps in lowering computational costs. Pooling layers operate independently 

on each feature map and involve various pooling methods, such as Max Pooling (selecting the largest element), 

Average Pooling (calculating the average of elements), or Sum Pooling (computing the sum of elements within a 

predefined section). Pooling layers serve as a bridge between the Convolutional Layer and the Fully Connected Layer, 

simplifying the data while preserving essential features. 

 

 Fully Connected Layer: The Fully Connected (FC) layer includes weights, biases, and neurons, connecting neurons 

from different layers. It's often found just before the output layer and forms the final layers of a CNN. In this layer, 

the input data from previous layers is flattened into a vector and passed to the FC layer. Within the FC layer, 

mathematical operations and transformations are applied to the flattened vector. The classification process, which 

involves assigning labels to the input data (in the context of image classification), begins at this stage. 

 

In addition to these core layers, there are two other crucial aspects: 

 

 Dropout Layer: Dropout is a regularization technique used to prevent overfitting in deep learning models. It randomly 

deactivates a fraction of neurons during each training iteration, which encourages the network to learn more robust 

and generalized representations. 

 

 Activation Function: Activation functions introduce non-linearity into the model and help the network learn complex 

patterns in data. Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh. 

 

 

(2.2) Google’s Teachable Machine 

 

Google's Teachable Machine stands as an accessible and user-friendly platform meticulously crafted to streamline the machine 

learning model training process. Designed with the aim of catering to individuals with limited or no prior experience in machine 

learning or individuals who lack the resource to train the machine learning models, this platform represents a commendable effort 

by Google's Creative Lab. 

 

 

Training Steps in Google’s Teachable Machine: 

 

 Data Input:  Users can easily input their data, whether it be images, sounds, or poses, directly into the Teachable 

Machine interface. This simplicity eliminates barriers for users who may not possess advanced technical skills.  

 

 Labeling: The platform allows users to label the data, providing crucial context for the model to learn and generalize 

patterns. Clear and concise labeling is pivotal for effective model training. 

 

 Model Training: Teachable Machine simplifies the complex process of model training. Users can effortlessly initiate 

the training process, with the platform leveraging underlying machine learning algorithms to iteratively refine the 

model based on the provided data. 
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 Evaluation and Iteration: The platform facilitates the evaluation of the trained model, allowing users to assess its 

performance. If adjustments are required, the iterative nature of the training process enables users to refine and 

enhance the model for better accuracy. 

 

 

(3) Web Interface Development 

In this phase, the focus was on creating a web interface for real-time sign language recognition and deploying the better trained 

model. This interface is user-friendly and responsive, allowing it to work effectively on various devices. The technology stack used for 

the frontend and backend development includes HTML and CSS for the frontend, and JavaScript/JQuery for the backend. 

 

 In our research, a seamless connection between the webpage and Python script was achieved through the strategic integration 

of Flask and jQuery AJAX. This collaborative framework played a crucial role in establishing efficient two-way 

communication, ensuring a responsive and user-friendly interface 

 

 Flask Implementation: Flask, a lightweight web framework for Python, formed the foundation of our server-side application. 

Its straightforward design allowed for the creation of RESTful APIs, enabling endpoints that the frontend could use to 

communicate with the backend. Flask routes were carefully structured to handle incoming requests, process data, and 

generate appropriate responses. 

 

 jQuery AJAX Integration: On the client side, jQuery's AJAX functionality was harnessed to establish asynchronous 

communication with the Flask backend. This combination facilitated the smooth transmission of data from the webpage to 

the Python script and back, enhancing user experience by providing real-time updates without requiring a full page reload. 

 

 Data Flow: The flow of data was orchestrated with precision. User actions on the webpage triggered AJAX requests, which 

seamlessly traveled to the Flask backend. The Python script processed the incoming data, performed necessary 

computations, and generated responses. These responses were then efficiently relayed back to the webpage, dynamically 

updating the user interface without unnecessary delays. 

 

 

 

Fig 7. Sample Screenshot of the webpage 

 

(4) Result 

 

The research involved the training of a sign language recognition model using two distinct dataset collection methods: the first 

utilizing Google's Mediapipe for hand tracking and hand landmark points, and the second employing image processing with OpenCV, 

incorporating filters such as grayscaling, Gaussian blur, and adaptive threshold. The comparative analysis of these methods revealed 

varying degrees of accuracy and F-Score. 

  

 (4.1) Google's Mediapipe Method: 

The model trained on the dataset generated through Google's Mediapipe demonstrated exceptional accuracy, achieving an impressive 

99.18% overall accuracy rate. Leveraging the "Handtracking" module and hand landmark points provided by Mediapipe, this method 

excelled in capturing dynamic hand movements and intricate gestures in real-time video streams. The precision offered by this method 

makes it particularly advantageous for scenarios requiring real-time recognition of sign language expressions. 

 

(4.2) OpenCV Image Processing Method: 

In contrast, the model trained on the dataset created through image processing with OpenCV, applying filters such as grayscaling, 

Gaussian blur, and adaptive threshold, achieved a respectable accuracy of 88.2%. While this method proved effective, especially in 

environments with minimal background noise, its overall accuracy fell below that of the Mediapipe-based approach. The success of this 

method is contingent on favorable conditions, making it imperative to address background noise for optimal performance. 
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(4.3) Comparative Performance: 

The comparative analysis underscores the superior accuracy of the Google's Mediapipe method, particularly in capturing the dynamic 

aspects of sign language. The OpenCV image processing method, while proficient, exhibits some limitations in scenarios with higher 

background noise. The research affirms the importance of selecting the appropriate dataset collection method based on specific 

application requirements and environmental conditions. 

 

  

(4.4) Accuracy Table: 

 

Accuracy 

Table 
No. of Epochs the model is Trained 

Methods 

Used for 

Training 

 10 25 50 100 

Using 

Meadipipe 
82.5 % 92.1 % 99.18 % 99.26 % 

Using 

OpenCV 
68.3 % 79.6 % 88.2 % 89.8 % 

 

 

 

III. CONCLUSIONS 

In conclusion, our research delved into the development of a sign language recognition model using two distinct approaches: Google's 

Mediapipe and OpenCV image processing. The results spotlighted the strengths and considerations of each method. 

 

Google's Mediapipe method emerged as a standout, showcasing exceptional accuracy at 99.18%. This approach, leveraging hand 

tracking and landmark points, excelled in capturing dynamic hand movements, proving ideal for real-time recognition of sign language 

expressions. Its precision and versatility make it a valuable choice, particularly for applications requiring instantaneous responsiveness. 

 

On the other hand, the OpenCV image processing method, with an accuracy of 88.2%, demonstrated commendable effectiveness. By 

employing filters like grayscaling and Gaussian blur, it showcased proficiency, especially in quieter environments. However, its overall 

accuracy lagged slightly behind the Mediapipe approach, highlighting its sensitivity to background noise. 

 

The comparative analysis accentuates the importance of method selection based on specific needs and environmental conditions. 

While Google's Mediapipe offers robust performance in dynamic scenarios, OpenCV's image processing method proves reliable in 

quieter settings. The research sheds light on the nuanced trade-offs between accuracy and environmental adaptability. 

 

As technology continues to advance, our findings contribute valuable insights to the development of accessible and efficient sign 

language recognition systems. The journey from dataset collection to model training underscores the significance of tailoring methods 

to the intricacies of sign language expressions. This research serves as a stepping stone, fostering an understanding of the diverse tools 

available for bridging communication gaps and ensuring inclusivity. In future endeavors, the refinement and integration of these 

methods will further contribute to creating accessible communication solutions, promoting the universal right to be heard and 

understood. 
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