
TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a635 
 

IMPLEMENTING MICROSERVICES USING 

CLOUD COMPUTING 
1A.Sindhu Devi  2 Dr.S.Maruthuperumal 

1 Student ,Department of CSE, BIHER, Chennai. 

2 Assistant Professor , Department of CSE, BIHER, Chennai. 

 

ABSTRACT 

The world today has more needs on internet. All 

our lives basically depend on internet where more 

information we needed are present at most. The 

internet used nowadays is used by million of 

people in their computer around the world. These 

computers are connected to each other through 

different platforms and different networks. The 

services needed for one user is nowadays provided 

with web services. Nowadays due to the vast usage 

of cloud computing implementing web services 

using cloud computing is easiest way for web 

services. 

1. INTRODUCTION 

 A web service is a unique method for 

sending messages between client and server 

applications on the World Wide Web. A web 

service is nothing but a software module that is 

designed to accomplish a specific set of tasks. Web 

services can be easily found and implemented over 

a network in cloud computing. Cloud computing 

had made easier way to implement web services. 

The web service would be able to provide all the 

needed functions to the client that is connected to 

the web service. A web service is a set of  protocols 

and standards that allow data exchange between 

different applications or systems within the World 

Wide Web. Web services can be used by software 

programs written in different programming 

languages and on different platforms to exchange 

data through the Internet. In the same way, 

communication on a computer can be internally 

processed. 

Any software, application, or cloud technology 

whichever  uses a unique or standardized Web 

protocol (HTTP or HTTPS) to connect, process, 

and exchange data messages over the Internet-

usually uses  XML (Extensible Markup Language). 

It is considered as a Web service.  

Web services uses programs developed in different 

languages to be connected between a client and a 

server by exchanging data over a web service. A 

client activates or process a web service by 

submitting an XML request. Whenever an XML 

request is send  the service is also responded with 

an XML response.  

Web Service Components 

XML and HTTP is the most fundamental web 

service platform. The components of Web services 

are as follows: 

A. SOAP (Simple Object Access Protocol) 

SOAP stands for "Simple Object Access Protocol". 

It is a transport-independent messaging protocol. 

SOAP is built on sending XML data in the form of 



TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a636 
 

SOAP messages. A document known as an XML 

document is attached to each message. 

Only the structure of an XML document, not the 

content, follows a pattern. The great thing about 

web services and SOAP is that everything is sent 

through HTTP, the standard web protocol. 

Every SOAP document requires a root element 

known as an element. In an XML document, the 

root element is the first element. 

The "envelope" is divided into two halves. The 

header comes first, followed by the body. Routing 

data, or information that directs the XML 

document to which client it should be sent, is 

contained in the header. The real message will be 

in the body. 

B. UDDI (Universal Description, Search, and 

Integration) 

UDDI is a standard for specifying, publishing and 

searching online service providers. It provides a 

specification that helps in hosting the data through 

web services. UDDI provides a repository where 

WSDL files can be hosted so that a client 

application can search the WSDL file to learn 

about the various actions provided by the web 

service. As a result, the client application will have 

full access to UDDI, which acts as the database for 

all WSDL files. 

The UDDI Registry will keep the information 

needed for online services, such as a telephone 

directory containing the name, address, and phone 

number of a certain person so that client 

applications can find where it is. 

 

 

C. WSDL (Web Services Description Language) 

The client implementing the web service must be 

aware of the location of the web service. If a web 

service cannot be found, it cannot be used. Second, 

the client application must understand what the 

web service does to implement the correct web 

service. WSDL, or Web Service Description 

Language, is used to accomplish this. A WSDL file 

is another XML-based file that describes what a 

web service does with a client application. The 

client application will understand where the web 

service is located and how to access it using the 

WSDL document. 

1.2 Scope of the Project: 

       This project is mainly used for secure 

transaction and reliable. Since we are 

implementing in microservices on cloud it is the 

most cost effective. The backup and restoration of 

data is made easier. The storage capacity of cloud 

computing is vast since the storage capacity of 

cloud computing is higher. 

2. LITERATURE SURVEY 

TITLE 1: Application of microservice 

architecture in cloud environment project 

development 

AUTHOR: Ling Zheng*, and Bo Wei 

With the development of the information age, 

business systems are becoming more and more 

complex. System development and maintenance 

are facing huge challenges. In response to this 

problem, a unified application development 

platform based on the microservice architecture is 

proposed. Compared with the traditional single-

architecture architecture, the microservices 



TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a637 
 

architecture can split a large and complex 

application system into a series of service modules 

that can be independently developed, tested, 

deployed, operated, and upgraded. This enables the 

application expansion and application reduction 

for a large number of Internet companies. 

Developing complexity and implementing agile 

development provide more effective methods. This 

article through a detailed case analysis - the 

development of the cloud platform system, 

describes the specific application of the 

microservice architecture in the actual project 

development, and discusses the advantages of the 

traditional single architecture model for the service 

architecture to build the system. Through research 

and analysis, it is concluded that the microservice 

architecture has certain guiding significance for 

solving problems that may be encountered in 

enterprise-level applications. 

TITLE 2: Microservices: architecture, 

container, and challenges 

AUTHOR: Guozhi Liu , Bi Huang , Zhihong 

Liang, Minmin Qin , Hua Zhou, Zhang Li 

Microservices are emerging as a new computing 

paradigm which is a suitable complementation of 

cloud computing. Microservices will decompose 

traditional monolithic applications into a set of 

fine-grained services, which can be independently 

developed, tested, and deployed. However, there 

are many challenges of microservices. This paper 

provides a comprehensive overview of 

microservices. More specifically, firstly, we 

systematically compare traditional monolithic 

architecture, service-oriented architecture (SOA), 

and microservices architecture. Secondly, we give 

an overview of the container technology. Finally, 

we outline the technical challenges of 

microservices, such as performance, debugging 

and data consistency. 

 

3. EXISTING SYSTEM 

A microservices architecture is one type of 

distributed system, since it decomposes an 

application into separate components or “services”. 

For example, a microservice architecture may have 

services that correspond to business features 

(payments, users, products, etc.) 

3.1 Disadvantage of Existing System: 

The legacy Java monolith application is not 

scalable, and it is one fat JAR which has to be 

deployed every time.  

Due to the size of the application the start time and 

application initialization time is adversely affected.  

Furthermore, additional memory pressure among 

high other system requirements is forcing the team 

to think about a strategy to control these issues in 

the long run. 

4. PROPOSED SYSTEM 

In order to thrive in today’s volatile, uncertain, 

complex and ambiguous world, businesses must be 

nimble, agile and innovate faster. Moreover, since 

modern businesses are powered by software, IT 

must deliver that software rapidly, frequently and 

reliably - as measured by the DORA metrics. 

Rapid, frequent, reliable and sustainable delivery 

requires the success triangle, a combination of 

three things: 

Process - DevOps as defined by the DevOps 

handbook 

https://ieeexplore.ieee.org/author/37088592557
https://ieeexplore.ieee.org/author/37088352431
https://ieeexplore.ieee.org/author/37088592118
https://ieeexplore.ieee.org/author/37088592118
https://ieeexplore.ieee.org/author/37088602223
https://ieeexplore.ieee.org/author/37088591086
https://ieeexplore.ieee.org/author/37088594114
https://microservices.io/articles/glossary.html#dora-metrics
https://microservices.io/tags/success%20triangle.html


TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a638 
 

Organization - a network of small, loosely coupled, 

cross-functional teams 

Architecture - a loosely coupled, testable and 

deployable architecture 

Teams work independently most of the time to 

produce a stream of small, frequent changes that 

are tested by an automated deployment pipeline 

and deployed into production. 

4.1 Advantages of Proposed System: 

Microservices architecture allows cross-functional 

teams to develop, test, problem-solve, deploy, and 

update services independently, which leads to 

faster deployment and troubleshooting turnaround 

times. 

Microservices are self-contained, independent 

deployment module. The cost of scaling is 

comparatively less than the monolithic 

architecture.  

Microservices are independently manageable 

services. It can enable more and more services as 

the need arises. 

It is possible to change or upgrade each service 

individually rather than upgrading in the entire 

application. 

Microservices allows us to develop an application 

which is organic (an application which latterly 

upgrades by adding more functions or modules) in 

nature. 

It enables event streaming technology to enable 

easy integration in comparison to heavyweight 

interposes communication. 

 

 

5. FLOWCHART DIAGRAM 

 

 

6. MODULES DESCRIPTION 

6.1 List of Modules: 

Domain Driven Design – Enabled by 

implementing Microservices based architecture – 

Modular routines for each of the functionalities – 

User, Product, Cart, Order and Reports  

Cloud First – Building a highly scalable, resilient, 

cost effective infrastructure using cloud 

Microservices architecture – Aligning each service 

to have it’s own database  

Scalable solution – Implementation of 

containerized application using Dockers and ECS 

to enable horizontal scaling 

Secured Application – Enabled by API Gateway, 

Lambda Authorizers, Security group & ACL’s 

Caching and Performance– Caching enabled by 

Redis cache for faster search 

Faster to Market – DevOps integration with CI/CD 

and Code Pipeline 

Event driven integration – Communication 

between decoupled services  



TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a639 
 

Operational excellence – Elastic search and Kibana 

integration to view logs and errors 

 

6.2 Modules Description 

1. Microservices 

Microservices make up the foundation of a 

microservices architecture. The term illustrates the 

method of breaking down an application into 

generally small, self-contained services, written in 

any language, that communicate over lightweight 

protocols. With independent microservices, 

software teams can implement iterative 

development processes, as well as create and 

upgrade features flexibly. 

Teams need to decide the proper size for 

microservices, keeping in mind that an overly 

granular collection of too-segmented services 

creates high overhead and management needs. 

Developers should thoroughly decouple services in 

order to minimize dependencies between them and 

promote service autonomy. And use lightweight 

communication mechanisms 

like REST and HTTP. 

 

 

The difference between monolithic and 

microservices design 

2. Containers 

Containers are units of software that package 

services and their dependencies, maintaining a 

consistent unit through development, test and 

production. Containers are not necessary for 

microservices deployment, nor are microservices 

needed to use containers. However, containers can 

potentially improve deployment time and app 

efficiency in a microservices architecture more so 

than other deployment techniques, such as VMs. 

The major difference between containers and VMs 

is that containers can share an OS and middleware 

components, whereas each VM includes an entire 

OS for its use. By eliminating the need for each 

VM to provide an individual OS for each small 

service, organizations can run a larger collection of 

microservices on a single server. 

https://www.techtarget.com/searchapparchitecture/definition/REST-REpresentational-State-Transfer
https://www.techtarget.com/whatis/definition/HTTP-Hypertext-Transfer-Protocol
https://searchservervirtualization.techtarget.com/answer/Containers-vs-VMs-Whats-the-difference


TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a640 
 

The other advantage of containers is their ability to 

deploy on-demand without negatively impacting 

application performance. Developers can also 

replace, move and replicate them with fairly 

minimal effort. The independence and consistency 

of containers is a critical part of scaling certain 

pieces of a microservices architecture -- according 

to workloads -- rather than the whole application. 

It also supports the ability to redeploy 

microservices in a failure. 

Docker, which started as an open-source platform 

for container management, is one of the 

most recognizable providers in the container 

space. However, Docker's success caused a large 

tooling ecosystem to evolve around it, spawning 

popular container orchestrators like Kubernetes. 

3. Service mesh 

In a microservices architecture, the service mesh 

creates a dynamic messaging layer to facilitate 

communication. It abstracts the communication 

layer, which means developers don't have to code 

in inter-process communication when they create 

the application. 

Service mesh tooling typically uses a sidecar 

pattern, which creates a proxy container that sits 

beside the containers that have either a single 

microservice instance or a collection of services. 

The sidecar routes traffic to and from the container, 

and directs communication with other sidecar 

proxies to maintain service connections. 

Two of today's most popular service mesh options 

are Istio, a project that Google launched alongside 

IBM and Lyft, and Linked, a project under the 

Cloud Native Computing Foundation. Both Istio 

and Linked are tied to Kubernetes, though they 

feature notable differences in areas such as support 

for non-container environments and traffic control 

capabilities. 

4. Service discovery 

Whether it's due to changing workloads, updates or 

failure mitigation, the number of microservice 

instances active in a deployment fluctuate. It can 

be difficult to keep track of large numbers of 

services that reside in distributed network locations 

throughout the application architecture. 

Service discovery helps service instances adapt in 

a changing deployment, and distribute load 

between the microservices accordingly. The 

service discovery component is made up of three 

parts: 

A service provider that originates service instances 

over a network; 

A service registry, which acts as a database that 

stores the location of available service instances; 

and 

A service consumer, which retrieves the location of 

a service instance from the registry, and then 

communicates with that instance. 

Service discovery also consists of two 

major discovery patterns: 

A client-side discovery pattern searches the service 

registry to locate a service provider, selects an 

appropriate and available service instance using a 

load balancing algorithm, and then makes a 

request. 

In a server-side discovery pattern, the router 

searches the service registry and, once the 

applicable service instance is found, forwards the 

request accordingly. 

https://searchservervirtualization.techtarget.com/feature/The-history-of-Dockers-climb-in-the-container-management-market
https://www.techtarget.com/searchapparchitecture/tip/Service-mesh-amplifies-microservice-management-capabilities
https://www.techtarget.com/searchapparchitecture/tip/Service-mesh-amplifies-microservice-management-capabilities
https://www.techtarget.com/searchitoperations/definition/sidecar-proxy
https://www.techtarget.com/searchitoperations/definition/sidecar-proxy
https://www.techtarget.com/searchitoperations/feature/Compare-Linkerd-vs-Istio-for-service-mesh-technology
https://searchservervirtualization.techtarget.com/definition/service-discovery
https://www.techtarget.com/searchapparchitecture/tip/Fundamental-patterns-for-service-discovery-in-microservices


TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a641 
 

Data residing in the service registry should always 

be current, so that related services can find their 

related service instances at runtime. If the service 

registry is down, it will hinder all the services, so 

enterprises typically use a distributed database, 

such as Apache ZooKeeper, to avoid regular 

failures. 

5. API gateway 

Another important component of a microservices 

architecture is an API gateway. API gateways are 

vital for communication in a distributed 

architecture, as they can create the main layer of 

abstraction between microservices and the outside 

clients. The API gateway will handle a large 

amount of the communication and administrative 

roles that typically occur within a monolithic 

application, allowing the microservices to remain 

lightweight. They can also authenticate, cache and 

manage requests, as well as monitor messaging and 

perform load balancing as necessary. 

Additionally, an API gateway can speed up 

communication between microservices and clients 

by standardizing messaging protocols translation 

and freeing both the client and the service from the 

task of translating requests written in unfamiliar 

formats. Most API gateways will also provide 

built-in security features, which means they can 

manage authorization and authentication for 

microservices, as well as track incoming and 

outgoing requests to identify any possible 

intrusions. 

There are a wide array of API gateway options on 

the market to choose from, both from proprietary 

cloud platform providers like Amazon and 

Microsoft and open source providers such as Kong 

and Tyk. 

7. CONCLUSION 

     This project is used to implement 

microservices using cloud computing for easy 

accessible and reliable transaction of messages. 

The cost of this project is less. The security on 

transaction is also high when compared to the 

existing system.  

 

8. REFERENCES 

 

1. Suyel Namasudra, Pinki Roy, Balamurugan 

Balusamy, Pandi Vijayakumar, "Data accessing 

based on the popularity value for cloud 

computing", 2017 International Conference on 

Innovations in Information, Embedded and 

Communication Systems (ICIIECS), pp.1-6, 2017. 

2. Tomas Harach, Petr Simonik, Adela Vrtkova, 

Tomas Mrovec, Tomas Klein, Joy Jason Ligori, 

Martin Koreny, "Novel Method for Determining 

Internal Combustion Engine Dysfunctions on 

Platform as a Service", Sensors, vol.23, no.1, 

pp.477, 2023. 

3. C. Wang, Q. Wang, K. Ren, W. Lou, “Privacy-

preserving public auditing for data storage security 

in cloud computing”, INFOCOM 2010, pp. 1-9, 

2010. 

4. Alwi Maulana, Pradana Ananda Raharja, 

"Design and Testing on Migration of Remiss-

Supply in Banking System to Microservice 

Architecture", 2022 IEEE International 

Conference on Communication, Networks and 

Satellite (COMNETSAT), pp.168-173, 2022. 

5. V. S. Devi Priya, S. Sibi Chakkaravarthy, 

"Containerized cloud-based honeypot deception 

for tracking attackers", Scientific Reports, vol.13, 

no.1, 2023. 

https://www.techtarget.com/searchapparchitecture/tip/A-quick-rundown-of-multi-runtime-microservices-architecture
https://www.techtarget.com/whatis/definition/API-gateway-application-programming-interface-gateway
https://www.techtarget.com/searchapparchitecture/tip/How-API-gateways-work-and-why-you-need-them
https://www.techtarget.com/searchapparchitecture/tip/Use-API-gateways-to-aid-microservices-communication-security
https://www.techtarget.com/searchapparchitecture/tip/Use-API-gateways-to-aid-microservices-communication-security
https://www.techtarget.com/searchapparchitecture/feature/A-feature-rundown-of-6-popular-API-gateway-tools


TIJER || ISSN 2349-9249 || © September 2023, Volume 10, Issue 9 || www.tijer.org 

TIJER2309087 TIJER - INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a642 
 

6. Xiaoming Yu, Wenjun Wu, Yangzhou Wang, 

"Dependable Workflow Scheduling for 

Microservice QoS Based on Deep Q-

Network", 2022 IEEE International Conference on 

Web Services (ICWS), pp.240-245, 2022. 

7.C.Erway, A.Kupcu, C.Papamanthou, and 

R.Tamassia, ―Dynamic provable data 

possession,‖ in Proc. of CCS’09. Chicago, IL, 

USA: ACM, 2009. 

8. Towards Secure and Dependable Storage 

Services in Cloud Computing Cong Wang, Student 

Member, IEEE, Qian Wang, Student Member, 

IEEE, Kui Ren, Member, IEEE, Ning Cao, Student 

Member, IEEE, and Wenjing Lou, Senior Member, 

IEEE- 2011. 

9. Addressing cloud computing security issues, 

Future generation computer systems (2011). 

10. P. Xu, H. Chen, D. Zou, and H. Jin, “Fine-

grained and heterogeneous proxy re-encryption for 

secure cloud storage,” Chin. Sci. Bull.,vol. 59, no. 

32, pp. 4201–4209, 2014. 

11. E.-J. Yoon, Y. Choi, and C. Kim, “New ID-

based proxy signature scheme with message 

recovery,” in Grid and Pervasive 

Computing(Lecture Notes in Computer Science), 

vol. 7861. Berlin, Germany: Springer-Verlag, 

2013, pp. 945– 951. 

 

 

 

 

 

 

 
 

 


