
TIJER || ISSN 2349-9249 || © May 2023 Volume 10, Issue 5 || www.tijer.org

TIJER2305033 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 382

Performance Analysis and Implementation of Lorenz

key generator

Thinesh R

PG Student, Department of CS,

Hindusthan College of Engineering &

Technology, Coimbatore,India

Dr.P.K.Poonguzhali

Professor, Department of ECE,

Hindusthan College of Engineering &

Technology, Coimbatore, India

Abstract—This work presents an approach for

Implementation of Lorenz key generator. Chaos is one of

the most significant topics in nonlinear science, and has

been intensively studying since the Lorenz system was

introduced. Investigation of nonlinear dynamics and

chaos in electronic systems has advanced tremendously

in recent years. A Lorenz system is a celebrated

nonlinear dynamical dissipative system which was

originally derived by Lorenz to study chaos in weather

patterns. At first, the Lorenz chaotic oscillator model is

constructed using MATLAB-Simulink model and later

it is converted to the Xilinx System Generator model.

The synchronization of the Lorenz oscillator is also done

in this project. The Pecora-Carroll identical cascading

synchronization method is adopted for achieving

synchronization. Here the behavior of the response

system depends on the behavior of the drive system. The

Xilinx system generator technology is used for the

conception of the Lorenz chaotic system and for

generating the code.

Keywords— Lorenz, MATLAB, Simulink, Xilinx

System Generator, Chaos.

I. INTRODUCTION

During the past decades, This technology allows

the appearance of hardware that is as flexible as the

programming paradigm in the realization of real-time

applications. In the case of the implementation of a digital

chaotic system, most approaches based on FPGA are

designed using a non-optimal description embedded

architecture by using automatic code generation [1-2].

Implement the chaotic behavior generators and the

chaotic attractors associated with certain practical

applications, many methods based on analogue circuits are

used, such as switched capacitors or analogue

Complementary Metal Oxide Semiconductor (CMOS)

technology.

There are two types of approaches when using

chaotic dynamics in cryptography. The first one used as key

streams to mask the plaintext in a manifold of ways. The

next one is used as initial state and the cipher text follows

from the orbit being generated

The Programmable devices are a class of

 general-purpose chips that can be configured for a

wide variety of applications. They have capability of

implementing the logic not only hundreds but also thousands

of discrete devices.

The xilinx System Generator bridges the gap between conceptual

architectural design and the actual implementation in a Xilinx.

 The System Generator for Simulink, developed in partnership

with The Math Works, Inc enables to develop high- performance

DSP systems for Xilinx FPGAs using the popular MATLAB

Simulink products from The MathWorks, Inc. As a plug-in to the

Simulink modelling software, the Xilinx System Generator

provides a bit-accurate model of FPGA circuits, and automatically

generates a synthesizable Hardware Description Language

(VHDL) code and a testbench. This VHDL design can then be

synthesized for implementation in Xilinx.

II. LORENZ EQUATIONS SYSTEM

The Lorenz system, invented for Edward N. Lorenz, The Lorenz

system is an example of a non-linear dynamic system these systems

are corresponding to the long-term behavior of the Lorenz system.

The Lorenz equation is based on the fundamental Navier-Stokes

equation for fluid. Different types of chaotic synchronization exist.

They are complete or identical or conventional

synchronization, generalized synchronization, phase

synchronization, amplitude envelope synchronization etc. A

consequence of extremely high sensitive dependence on initial

conditions is the two identical but independently evolving chaotic

systems can never synchronize with one another, that is the

corresponding state variables of the two systems cannot evolve

identically, as any infinitesimal deviations in the starting conditions

or in the system specification can lead to exponentially diverging

trajectories making synchroniation impossible.

 Contrast this with the case of linear systems, where the

evolution of two identical systems can be very naturally

synchronized.

Chaotic system started with nearly the same initial

conditions, having two chaotic system evolving in synchrony might

appear quite surprising.

 Chaos is one of the most significant topics in nonlinear

science, and has been intensively studying since the Lorenz system

was introduced. Investigation of nonlinear dynamics and chaos in

electronic systems has advanced tremendously in recent years. A

Lorenz system is a celebrated nonlinear dynamical dissipative

system which was originally derived by Lorenz to study chaos in

weather patterns.

TIJER || ISSN 2349-9249 || © May 2023 Volume 10, Issue 5 || www.tijer.org

TIJER2305033 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 383

The three equations that govern the Lorenz system following:

dX = σ ∗ (y – x) (1)
dt

unbreakable.

dy = ((r ∗ x) − (y) − (x ∗ z)) (2)
dt

dz = ((x ∗ y)– (β ∗ z)) (3)
dt

where, σ, β and r called the control parameters. All control

parameters should be greater than zero (σ, r, β > 0), but

usually σ = 10, β = 8/3 and r is varied. The system exhibits

chaotic behaviour for r = 28. To resolving this Lorenz system.

III. FLOW DIAGRAM

At very first, the Lorenz chaotic oscillator model is

designed using MATLAB code. Once code is successfully

verified after that the model is constructed using MATLAB-

Simulink model. A flowchart is a diagram which represents

an algorithm or process, including a computer program. The

goal is to show each step as a box of various kinds, and

describe their order by connecting each box with arrows.

While most experienced programmers don’t bother with flow

charts, they will be helpful in creating organized your code

when you are a beginner. They are also pretty mandatory if

you are trying to write code that will be used by other people,

since they provide an easy way of allowing people to make

sense of how you conceptualize your program.

 The Xilinx System Generator bridges the gap

between conceptual architectural design and the actual

implementation in a Xilinx FPGA. Xilinx ISE design suite

software is used to allows us to generate the FPGA’s

programming file. Fig 1 shows implementation flow diagram

of this work.

Fig 1: Flow diagram of this work

IV. IMPLEMENTATION OF LORENZ SYSTEM USING MATLAB

CODE

The generators are first represented by a set of nonlinear
equations and a system-based model is developed to represent
the equations directly. The Lorenz oscillator is a 3-
dimensional dynamical system that exhibits chaotic flow,
noted for its lemniscate shape. The map shows how the state
of a dynamical system (the three variables of a three-
dimensional system) evolves over time in a complex, non-
repeating pattern.

Fig 2: Lorenz equation model MATLAB code output

V. IMPLEMENTATION OF LORENZ SYSTEM USING MATLAB

SIMULINK

Once MATLAB code is successfully verified after

that the model is constructed using MATLAB-Simulink

model. The Lorenz attractor, named for Edward N. Lorenz, is

an example of a non-linear dynamic system corresponding to

the long-term behavior of the Lorenz oscillator.The Lorenz

oscillator is a 3-dimensional dynamical system that exhibits

chaotic flow, noted for its lemniscate shape. The map shows

how the state of a dynamical system (the three variables of a

three-dimensional system) evolves over time in a complex,

non-repeating pattern.

The products xz and xy that are performed by two

multipliers. The equations are simulated using the Simulink

block diagram presented by Fig 3. and Fig 4. The first parts

relate to the phase plane (x, y) and (y, z) and final parts relate

to the phase plane (x, z).

Fig 3: Simulink model of Lorenz Choatic system

TIJER || ISSN 2349-9249 || © May 2023 Volume 10, Issue 5 || www.tijer.org

TIJER2305033 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 384

Fig 4: Space diagram of (XY) and (YZ) attractor.

Fig 5: Space diagram of (ZX) attractor.

VI. IMPLEMENTATION OF LORENZ SYSTEM

USING XILINX SYSTEM GENERATOR

Now the Simulink model was converted to Xilinx

System Generator Model using Xilinx block set under the

MATLAB. The main problem was there is no integrator

within the Xilinx System Generator toolbox, so the integrator

block was converted to model as shown in Fig 6.

Parameters σ, r, and b denote the Prandtl number, Rayleigh

number, and a geometric factor, respectively (Weisstein,

2002). Well-known parameter values for Lorenz system (48)

showing chaotic behaviors are used for numerical

simulations: σ = 3, r = 28, and b = 8/3.This circuit uses 32-bits

words with the binary point position after the bit number 16.

The parameter dt presented in the block dt represents the

integration step. The initial state of the integrator is stored

inside the block Register, in the field Initial Value.

Fig 6: Integrator model using Xilinx system

generator The Lorenz system presented previously is

now
implemented using Xilinx block set library’s elements as can
be seen in Fig 7 Three integrators blocks that can be seen in
this structure are the same as already presented in Fig 6. From
the reference paper [6] the author chooses three different value
for different integrators.

Fig 7: Lorenz chaotic generator using Xilinx System
Generator blocks.

The all three Integrators has an initial condition equal to
10. The integration step dt used in this design is equal to 0.01.
Many authors choose different initial values (x0, y0, z0) for
getting perfect Lorenz output. The perfect output based on
control parameters constant values.

Fig 8: Space diagram of (XY) and (YZ) attractor.

Fig 9: Space diagram of (ZX) attractor.

TIJER || ISSN 2349-9249 || © May 2023 Volume 10, Issue 5 || www.tijer.org

TIJER2305033 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 385

The Fig 8. The first parts relate to the phase plane

(x, y) and second part is (y, z) and final part Fig 9 is related

to the phase plane (x, z) of System generator output. Fig 10

shows Signals x, y and z generated by the Lorenz system

created using Xilinx system generator. All the control

parameter values in every cycle period in Fig 10. The figures

below are obtained by fixing the following parameters, σ =

10, β = 8/3 and r = 28. The initial conditions x0 = 10, y0 = 10

and z0 = 10. It seems clearly that the different signals x, y and

z have a random behaviour.

Fig 10 Signals x, y and z generated by the Lorenz system

using system generator

VII. CONCLUSION

This work focuses on the Chaotic operation, Lorenz

is one of the most significant topics in nonlinear science, and

has been intensively studying since the Lorenz system was

introduced. Investigation of nonlinear dynamics and chaos in

electronic systems has advanced tremendously in recent

years. A Lorenz system is a celebrated nonlinear dynamical

dissipative system which was originally derived by Lorenz to

study chaos in weather patterns. This implementation of a

random key, based on Lorenz's chaotic generator for

information security. The developed approach consists on

using the implemented forth order Rung-Kutta method to

resolve the differential equations system of the Lorenz

chaotic generator. Lorenz chaotic oscillator model was

designed and simulated using MATLAB code, MATLAB-

Simulink and Xilinx System Generator. This design approach

can be extended for FPGA implementation of other chaotic

generator designs. The implementation of the proposed

architecture allows a very useful and attractive trade-off

between high speed, low area cost and data security

transmission for an information security system.

REFERENCES

[1] Blaine C “A Concise Introduction for FPGA Design”,pp.821-
824,Feb.2011.

[2] Chen Henson tine,“EP32 RISC Processor IP: Description and
Implementation Into FPGA”. Appl. Math. Sci. 7(5), 237–246 (2020).

[3] Blaine C “A Concise Introduction for FPGA Design”, Vol.51, No.8, Aug

2014.
[4] L. Zhang, "System generator model-based fpga design optimization and

hardware co- simulation for lorenz chaotic generator", 2017 2nd Asia-

Pacific Conference on Intelligent Robot Systems (ACIRS 2017), pp. 170-
174, June 2017.

[5] Robert zeidman, “Chaos Communications-Principles, Schemes and
Systems analysis’’, Proc. of the IEEE Inst. for Fundamentals of Electr.Eng.

& Electron.,Dresden Univ. of Technol, 90. 2002. pp. 691-710.
[6] B N, Aryalekshmi, “FPGA Implementation of Lorenz’s Chaotic Generator”,

Universal review, vol viii, March 2019.

[7] Sadoudi S, Azzaz M.S., Djeddou, M., Benssalah, M. “An FPGA real-time
implementation of the Chen’s chaotic system for securing chaotic

communicate ons” International Journal, Nonlinear Science. 7, 467–474

(2009).

[8] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-

2008, New York: IEEE, Inc., Aug. 29, 2008.

[9] IEEE standard for binary-floating point arithmetic, ANSI/IEEE Std

754-1985, The Institute of Electrical and Electronic Engineers Inc.,
New York, August 1985.

[10] M. Aseeri, M. I. Sobhy, and P. Lee “Lorenz chaotic model using field

programmable gate array (fpga),” in The Midwest.
[11] M.Lakshmanan, S.Rajasekar, ”Nonlinear Dynamics Integrability,

Chaos and Patterns “ 3rd edition Springer International Edition.

https://www.google.com/search?rlz=1C1CHZN_enIN1042IN1042&cs=0&sxsrf=APwXEdcdhc69yWk756m1zH7a1YHP1j5Iag:1683017511741&q=Verilog+by+Example:+A+Concise+Introduction+for+FPGA+Design&stick=H4sIAAAAAAAAAONgVeLRT9c3NErKzU42Nk8zkihKTUstSs1LTlVIys_PLlZIyy9SSCtITzzFiKLwFCMviGuYZGaQY2BmkXGKkUs_V9_ALK2gshIumZNkmFdVnFYB46cZFuUm5Zpmwc0qLDBOMTaC6c3KMjIohMoZ5pZV5phUWULlTA3TU4wrHjEuYeIWePnjnrDULKZJa05eY5zMxCXgk59fnJpTGZSak1iSmhKSLyTGxeaaV5JZUinEI8XFxQHSb1RZUiTUxMjFHZxaEpLvm5-SmVYpVCxUSJzuFLP0IiFXVM1mQiZcnL6puUmpRcX-aULKXFzO-Tk5qcklmfl5QqJSwlyC-slwAX1wWFoxaTApJRj57ro07RybuyADEPwIDHKQEtcS5uIISazIz8vPrRQ8bJviuDv3mb0Fg5IiJ1CJwgKGd_YgxQ2rjGwPSDAqsGgwGIL0fr9qfkCLYQITY9O-FYfYODgYBRiMmDgYqhh4FrFahaUWZebkpyskVSq4ViTmFuSkWik4Kjjn5yVnFqcqeOaVFOWnlILdBo5htwB3RwWX1OLM9LwJbIwAiFQ24hYCAAA&sa=X&ved=2ahUKEwjmu77noNb-AhX4xzgGHQCQDyUQ7fAIegQIABAB
https://www.google.com/search?rlz=1C1CHZN_enIN1042IN1042&cs=0&sxsrf=APwXEdesk0PXmwQqCB6WG5Q9EH2rroSrmA:1683017853400&q=EP32+RISC+Processor+IP:+Description+and+Implementation+Into+FPGA+Chen-Hanson+Ting&stick=H4sIAAAAAAAAAONgVeLVT9c3NMxJMsyrKk6rMJIoSk1LLUrNS05VSMrPzy5WSMsvUkgrSE88xcgDUmmUlJudbGyedooRojHJzCDHwMwi4xQjl36uvoFZWkFlJVwSZiqMn2ZYlJuUa5oFN6uwwDjF2AimNyvLyKAQKmeYW1aZY1JlCZUzNUxPMa54xLiEiVvg5Y97wlKzmCatOXmNcTITl4BPfn5xak5lUGpOYklqSki-kBgXm2teSWZJpRCPFBcXB0i_UWVJkVATIxd3cGpJSL5vfkpmWqVQsVAhcbpTzNKLhFxRNZsJmXBx-qbmJqUWFfunCSlzcTnn5-SkJpdk5ucJiUoJcwnqJ8MF9MFhacWkwaSUYOS769K0c2zuggxA8CMwyEFKXEuYiyMksSI_Lz-3UjCZR_rfrtxn9hYMSoqcQCUKCxje2YMUN6wysj0gwajAosFgCNL7_ar5AS2GCUyMTftWHGLj4GAUYDBi4mCoYuBZxBroGmBspBDkGeysEFCUn5xaXAyMRs8AKwWX1OLkoswCkKMUEvNSFDxzC3JSc1PzShLBQp55JfkKbgHujgrOGal5uh6JecVA0ZDMvPQJbIwAMQKIpy4CAAA&sa=X&ved=2ahUKEwish7WKotb-AhU--TgGHRQ1DcsQ7fAIegQIABAx
https://www.google.com/search?rlz=1C1CHZN_enIN1042IN1042&cs=0&sxsrf=APwXEdesk0PXmwQqCB6WG5Q9EH2rroSrmA:1683017853400&q=EP32+RISC+Processor+IP:+Description+and+Implementation+Into+FPGA+Chen-Hanson+Ting&stick=H4sIAAAAAAAAAONgVeLVT9c3NMxJMsyrKk6rMJIoSk1LLUrNS05VSMrPzy5WSMsvUkgrSE88xcgDUmmUlJudbGyedooRojHJzCDHwMwi4xQjl36uvoFZWkFlJVwSZiqMn2ZYlJuUa5oFN6uwwDjF2AimNyvLyKAQKmeYW1aZY1JlCZUzNUxPMa54xLiEiVvg5Y97wlKzmCatOXmNcTITl4BPfn5xak5lUGpOYklqSki-kBgXm2teSWZJpRCPFBcXB0i_UWVJkVATIxd3cGpJSL5vfkpmWqVQsVAhcbpTzNKLhFxRNZsJmXBx-qbmJqUWFfunCSlzcTnn5-SkJpdk5ucJiUoJcwnqJ8MF9MFhacWkwaSUYOS769K0c2zuggxA8CMwyEFKXEuYiyMksSI_Lz-3UjCZR_rfrtxn9hYMSoqcQCUKCxje2YMUN6wysj0gwajAosFgCNL7_ar5AS2GCUyMTftWHGLj4GAUYDBi4mCoYuBZxBroGmBspBDkGeysEFCUn5xaXAyMRs8AKwWX1OLkoswCkKMUEvNSFDxzC3JSc1PzShLBQp55JfkKbgHujgrOGal5uh6JecVA0ZDMvPQJbIwAMQKIpy4CAAA&sa=X&ved=2ahUKEwish7WKotb-AhU--TgGHRQ1DcsQ7fAIegQIABAx
https://www.google.com/search?rlz=1C1CHZN_enIN1042IN1042&cs=0&sxsrf=APwXEdesk0PXmwQqCB6WG5Q9EH2rroSrmA:1683017853400&q=VHDL+by+Example:+A+Concise+Introduction+for+FPGA+Design+Blaine+C.+Readler&stick=H4sIAAAAAAAAAONgVeLVT9c3NEwyM8gxMLPIMJIoSk1LLUrNS05VSMrPzy5WSMsvUkgrSE88xcgDUmmUlJudbGyedooRVeMpRi79XH0Ds7SCykq4ZE6SYV5VcVoFjJ9mWJSblGuaBTersMA4xdgIpjcry8igECpnmFtWmWNSZQmVMzVMTzGueMS4hIlb4OWPe8JSs5gmrTl5jXEyE5eAT35-cWpOZVBqTmJJakpIvpAYF5trXklmSaUQjxQXFwdIv1FlSZFQEyMXd3BqSUi-b35KZlqlULFQIXG6U8zSi4RcUTWbCZlwcfqm5ialFhX7pwkpc3E55-fkpCaXZObnCYlKCXMJ6ifDBfTBYWnFpMGklGDku-vStHNs7oIMQPAjMMhBSlxLmIsjJLEiPy8_t1IwmUf6367cZ_YWDEqKnEAlCgsY3tmDFDesMrI9IMGowKLBYAjS-_2q-QEthglMjE37Vhxi4-BgFGAwYuJgqGLgWcTqGebh4qOQVKngWpGYW5CTaqXgqOCcn5ecWZyq4JlXUpSfUgp2GDh63QLcHRVcUosz0_MUnHISM_NSFZz1FIJSE1NyUosmsDECACvSXG4mAgAA&sa=X&ved=2ahUKEwish7WKotb-AhU--TgGHRQ1DcsQ7fAIegQIABAR

