On 3-dimensional f-Kenmotsu Manifolds with semi-symmetric metric connection

Dr.N.V.C Shukla and Mantasha
(Department of Mathematics and Astronomy, University of Lucknow)

Abstract

The main purpose of this paper is to exploration about f-Kenmotsu manifolds with semisymmetric metric connections. Some necessafy and suffieient conditions for such manifolds to be η parallel are studied. Ricci tensor,Projective curvature tensor and Concircular curvature tensor have been studied on this manjfold. Also we have constructed an example of ag of f-kenmotsu manifolds to justify our results. 2020Mathematical'Sciences Classification.53C15,53C20.

Keywords: f-Kentrotsumanifold, Semi-symmetric metric connection, η-parallel Riccitensor, Concircular curvature tensor, Projective curvature tensor and Einstein manifold etc.

1 Introduction

In 1958, M1M:Boothby and R.C.Wong [8] introduce the concept of odd dimensional manifold with contact and almost contact structure. K.Kenmotsu[6] in 1972 studied a class of almost côntact metric manifolds and called them as a Kenmotsu Manifold. He also proved that if a Kenmotsu manifold satisfies the condition of $R(X, Y) . R=0$ then the manifold became of negative curvature -1 , where R is the Riemanian curvature tensor of type (1,3). In 1924, Friedman and Schouten[1] introduced the notion of seni-symmetric metric connections on a differentiable manifold and the notion of semi-symmetric metric connection was defined and studied by S.Golab[10]. The notion of quarter symmetric metric connection is a generelization of semi-symmetric metric connection. A linear connection is said to bera
semi-symmetric metric connection if its torsion tensor T is of the form,

$$
\begin{equation*}
T(X, Y)=\eta(Y) X-\eta(X) Y \tag{1.1}
\end{equation*}
$$

where η is a 1 -form.
$\ln 1970$, K.Yano[7] considered a semi-symmetric metric connection and studied some of its properties.

2 Preliminaries

Let M be a 3 - dimensional differentiable manifold with an almost contact metric structure ($\phi, \xi, \eta, \mathrm{g}$), where ϕ is a (1,1)-tensor field,ξ is a vector field, η is a 1 -form and g is a Riemannian metrie on the manifold, satisfying the relations

$$
\begin{align*}
& \phi^{2} X=-X+\eta(X) \otimes \xi \tag{2-1}\\
& \eta(\xi)=1 \tag{2.2}\\
& \eta(X)=g(X, \xi) \tag{2.3}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.4}\\
& \theta(X, \phi Y)=-g(\phi X, Y) \tag{2.5}\\
& \phi \xi=0 \tag{2.6}\\
& \eta \circ \phi=0 \tag{2.7}
\end{align*}
$$

for any vector fields X, Y on the manifold M. The manifold M is called an f-Kenmotsu manifold if the covariant differentiation of ϕ satisfies the relation [5]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=f(g(\phi X, Y) \xi-\eta(Y) \phi X), \tag{2.8}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of the f-Kenmotsu manifolds and f is a c^{∞} - function on the manifold. If $f=\beta=$ constant $\neq 0$,then the manifold is β-Kenmotsu manifold [13] and if $f=0$, then the manifold reduces to cosympletic manifold [13]. Moreover f-Kenmotsu manifold is called regular if $f^{2}+f^{\prime} \neq 0$, where $f^{\prime}=\xi f$. From equation (2.2) , we get

$$
\begin{equation*}
\nabla_{X} \xi=f[X-\eta(X) \xi] . \tag{2.9}
\end{equation*}
$$

In a 3- dimensional f-Kenmotsu manifold, we have [2]

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{2.10}\\
& R(X, Y) \xi^{\prime}= \tag{2.11}\\
& R(X, \xi)=-2\left(f^{2}+f^{\prime}\right) \eta(X), \tag{2.13}\\
& S(\xi, \xi)=-2\left(f^{2}+f^{\prime}\right), \tag{2.14}\\
& Q \xi=-2\left(f^{2}+f^{\prime}\right) \xi,
\end{align*}
$$

where R, S and Q denote the Riemanian curvature tensor, Ricci tensor and Ricci operator respectively. 'As anserquence of equation (2.9) we also have,

$$
\left(\nabla_{X} \eta\right)(Y)=f g(\phi X, \phi Y)
$$

$$
S(\phi X, \phi Y)=S(X, Y)+2\left(f^{2}+f^{\prime}\right) \eta(X) \eta(Y)
$$

for all vector fields X,Y. In a 3-dimensional f-Kenmotsu manifold we also have [10]

$$
\begin{gathered}
R(X, Y) Z=\left(\frac{r}{2}+2 f^{2}+2 f^{\prime}\right)(X \wedge Y) Z-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right)(\eta(X)(\xi \wedge Y) Z \\
+\eta(Y)(X \wedge \xi) Z)
\end{gathered}
$$

(2.18)

$$
S(X, Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right) g(X, Y)-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right) \eta(X) \eta(Y)
$$

where r is the scalar curvature and $f^{\prime}=\xi f$.

3 f-Kenmotsu manifolds with semi-symmetric metric connection-

Let M be a-dimensional f-Kenmotsu manifold and ∇ denotes the Levi-Civita connection on it. A linear connectien $\widetilde{\nabla}$ on M is said to be a semi-symmetric if the torsion tensor \tilde{T} of type $(1,2)$ defined by,

$$
\begin{equation*}
\tilde{T}(X, Y)=\widetilde{\nabla}_{X} Y-\widetilde{\nabla}_{Y} X-[X, Y] \tag{3.1}
\end{equation*}
$$

satisfies,

$$
\begin{equation*}
\tilde{T}(X, Y)=\eta(Y) X-\eta(X) Y, \tag{3.2}
\end{equation*}
$$

for all vector fields X and Y on M. If moreover, the semi-symmetric connection $\widetilde{\nabla}$ holds the relation $\widetilde{\nabla}_{g}=0$ is called semi-symmetric metric connection. A semi-symmetric connection $\widetilde{\nabla}$ is said to be non-metric if $\widetilde{\nabla}_{g} \neq 0$. A relation between a semi-symmetric metric and Levi-Civita connections is given as,

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi \tag{3.3}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M)$ ([22]). With the help of equations (2.1),(2.2), (2.3),(2.4),(2.5) we can easily observe that

$$
\begin{equation*}
\left(\widetilde{\nabla}_{x} \eta\right)(Y)=\left(\nabla_{x} \eta\right) Y-\eta(X) \eta(Y)+g(X, Y) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{X} \phi(\vec{Y})=-g(X, \phi Y) \xi-2 \dot{\eta}(Y) \ddot{\phi} X \tag{3.5}
\end{equation*}
$$

If R and \tilde{R} denotes the curvature tensors with respect to the Levi-Civita and semi-symmetric metric connections of the manifold \bar{M} respectively, then

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} Z-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} Z-\widetilde{\nabla}[X, Y], \tag{3.6}
\end{equation*}
$$

for all $X \in \chi(M)$. In consequence of equations (2.1), (2.2), (2.3), (2.4), we have

$$
\begin{aligned}
& \tilde{R}(X, Y) Z=R(X, Y) Z+2 f g(X, Z) Y-2 f g(Y, Z) X \\
& +f \eta(Z)(X \eta(Y)-Y \eta(X))+f^{\prime}(\eta(X) g(Y, Z) \\
& -\eta(Y) g(X, Z))+\eta(Z)(Y \eta(X)-X \eta(Y)) \\
& -X g(Y, Z)+Y g(X, Z)+(\eta(X) g(Y, Z)-\eta(Y) g(X, Z)) \xi
\end{aligned}
$$

for all $X, Y, Z \in \chi(M)$, we can write,

$$
\begin{align*}
& \tilde{R}(X, Y) Z=R(X, Y) Z-(f+1)[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X] \\
& -(f+1)[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi \\
& +(2 f+1)[g(X, Z) Y-g(Y, Z) X] \tag{3.8}
\end{align*}
$$

which is similar to

$$
\begin{equation*}
\tilde{Q} Y=Q Y+(f+1) \eta(Y) \xi-(3 f+1) Y \text {, } \tag{3.10}
\end{equation*}
$$

(3.9)
now contracting equation(3.8) with respect to the vector field X, we get

$$
\begin{equation*}
\tilde{S}(Y, Z)=S(Y, Z)+(f+1) \eta(Y) \eta(Z)-(3 f+1) g(Y, Z) \tag{3.9}
\end{equation*}
$$

where Q and Q denotes the Ricci operators corresponding to the respective connections $\widetilde{\nabla} \quad$ and $\quad \nabla$ and now we have to defined $\tilde{S}(Y, Z)=g(\tilde{Q} Y, Z)$ and $S(Y Z)=g(Q Y, Z)$. Let $e_{i}, i=1,2,3, \ldots, m$ be an orthonormal basis of the tangent space at every point of manifold M . Now considering $Y Z=e_{i}$ in equation (3.10) and taking summation over $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, we have

$$
\begin{equation*}
\tilde{r}=r-8 f-2 \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{r}=\sum_{i=1}^{n} \tilde{S}\left(e_{i}, e_{i}\right) \tag{3.12}
\end{equation*}
$$

which represents the scalar curvatures with respect to the connections $\widetilde{\nabla}$ and ∇ respectively. A f-Kenmotsu manifold is said to be η-Einstein Manifold if its Ricci tensor S takes the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{3.13}
\end{equation*}
$$

for arbitrary vector fields X and Y, where a and b are smooth functions on manifold (M, g) [5]. If $b=0$, then η-Einstein manifold becomes Einstein manifold.

Theorem 3.1 Let M be a 3-dimensional f-Kenmotsu manifold equipped with a semi-symmetric metric connection $\widetilde{\nabla}$. Then the Ricci tensor \tilde{S} on M is η-einstein with respect to semi-symmetric metric connection \widetilde{M}.

Proof. Let M be a 3- dimensional f-Kenmotsu manifold with a semi-symmetric metric connection $\widetilde{\nabla}$. We know that Ricci tensor for f-Kenmotsu manifold is given as

$$
\begin{equation*}
\tilde{S}(Y, Z)=S(Y, Z)+(f+1) \eta(Y) \eta(Z)-(3 f+1) g(Y, Z) \tag{3.14}
\end{equation*}
$$

if we consider $S\left(X, Y_{1}\right)=0$, then we get Ricci tensor is of the form

$$
\begin{equation*}
\tilde{S}(Y, Z)=(f+1) \eta(Y) \eta(Z)-(3 f+1) g(Y, Z) \tag{3.15}
\end{equation*}
$$

This shōws that-Ricci tensor \tilde{S} is of the form of η-Einstien manifold.

$4 \quad \eta$-parallel Ricci tensor with semi-symmetric metric connection

Many authors studied the properties of η-parallel Riccitensor and proved several results on it [8]. In this section we have to discussed about the various geometrical properties of η-parallel Ricci tenspr with respect to the semi-symmetric metric connection $\widetilde{\nabla}$. A Ricci tensor \tilde{S} of an n-dimensional Kenmotsu manifold M endowed with a semi-symmetric metric connection $\widetilde{\nabla}$ is said to be η-parallel if it-satisfjes the following relation

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \tilde{S}\right)(\phi Y, \phi Z)=0 \tag{4.1}
\end{equation*}
$$

for arbitrary vector fields X, Y and Z.
Theorem 4.1 Let M be a 3-dimensional f-Kenmotsu manifold equipped with a semi-symmetric metric cönnection $\widetilde{\nabla}$. Then the Ricci tensor S is η-parallel with respect to semi-symmetric metric connection $\widetilde{\nabla}$ on the manifold M.

Proof. Let M be a 3-dimensional f-Kenmotsu manifold with a semi-symmetric metric connection $\widetilde{\nabla}$. We have

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=f(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{4,2}\\
\tilde{S}(X, Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right) g(X, Y)-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right)(\eta(X) \eta(Y)) \tag{4.3}
\end{gather*}
$$

now putting $X=\phi X$ and $Y=\phi Y$ in (4.3), we have

$$
\begin{equation*}
\tilde{S}(\phi X, \phi Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right) g(\phi X, \phi Y)-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right)(\eta(\phi X) \eta(\phi Y)) \tag{4.4}
\end{equation*}
$$

as we know that $\eta \phi=0$ and using the equation which is given below

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{4.5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\tilde{S}(\phi X, \phi Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right)[g(X, Y)-\eta(X) \eta(Y)] \tag{4.6}
\end{equation*}
$$

since we know that

$$
\begin{equation*}
\eta(X)=g(X, \xi), \eta(Y)=g(Y, \xi) \tag{4.7}
\end{equation*}
$$

so we get

$$
\begin{equation*}
\tilde{S}(\phi X, \phi Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right)[g(X, Y)-g(X, \xi) g(Y, \xi)] \tag{4.8}
\end{equation*}
$$

now differentiating equation (4.8) covariantly with respect to vector field Z, we get

$$
\begin{equation*}
\widetilde{\nabla}_{Z} \tilde{S}(\phi X, \phi Y)=0 \tag{4.9}
\end{equation*}
$$

as $\nabla_{X} g(Y, Z)=0$
Hence S is η-parallel with respect to semi-symmetric metric connection $\widetilde{\nabla}$ on the manifold M.
Theorem 4.2 If the Ricci tensor \tilde{S} of a 3-dimensitional f-K̆enmotsu manifold M equipped with a semisymmetric metric connection $\widetilde{\nabla}$ is η_{-}parallel, then the scalar curvature for the semi-symmetric metric connection $\widetilde{\nabla}$ is $-8 f^{\prime}$.

Proof. Let M be a 3 -dimensional f-Kenmotsu manifold with semi-symmteric metric connection $\widetilde{\nabla}$. Let $e_{i}, i=1,2,3, \ldots n$ be an orthonormal basis of the tangent space at any point of the manifold M.
From equation (3.11) we have scalar curvature \tilde{r} of the form,

$$
\begin{equation*}
\tilde{r}=r-8 f-2, \tag{4:10}
\end{equation*}
$$

$(4,15)$
${ }^{\prime}$ where $f f$ ' $=\xi f$.

$$
d \tilde{r}(X)=-8 f^{\prime}
$$

5 Concircular curvature tensor with semi-symmetric metric connection

it is known that a geodesic circle (a curve whose first curvature is constant and second curvature is identically zero) is not tranformed into a geodesic circle by the conformal transformation

$$
\begin{equation*}
\bar{g}_{i j}=\psi^{2} g_{i j} \tag{5.1}
\end{equation*}
$$

where $g_{i j}$ denotes the fundamental tensor.K.Yano [7] proved about the conformal transformation ,which is well-defined in equation (5.1), satisfying the partial differential equation
1

$$
\begin{equation*}
\psi_{i ; j}=\phi g_{i j} \tag{5.2}
\end{equation*}
$$

It is clearly alter a geodesic circle into a geodesic circle. Such kind of transformation is concircular transformation and the geometry deals with such transformation is known as concircular geometry [14] . Atensor field of type $(1,3)$ on Riemannian manifold, which remains invariant under the concireular transformation defined by,

$$
\begin{equation*}
C(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{5.3}
\end{equation*}
$$

where R is the curvature tensor and r denotes the scalar curvature, is known as concirculat curvature tensor [11] .
Let M be a 3-dimensional f-Kenmotsu manifold equipped with a semi-symmetric metric connection $\widetilde{\nabla}$. A concircular curvature tensor \tilde{C} with semi-symmetric metric connection $\widetilde{\nabla}$ on the manifold M is a tensor field of type $(1,3)$ defined as,

$$
\begin{equation*}
\tilde{C}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{\tilde{r}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{5.4}
\end{equation*}
$$

for all vector fields $X, Y, Z \in \chi(M)$.Here \tilde{R} and \tilde{r} are the curvature tensor and scalar curvature of the manifold M with semi symmetric metric connection $\widetilde{\nabla}$ respectively.

Let M be a 3-dimensional f-kenmotsu manifold equipped with a semi-symmetric metric connection $\widetilde{\nabla}$. A Projective curvature tensor \widetilde{P} with semi-symmetric metric connection $\widetilde{\nabla}$ on the manifold M is a tensor field of type $(1,3)$ is given as,

$$
\begin{equation*}
\tilde{P}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{1}{n-1}[\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y] \tag{5.5}
\end{equation*}
$$

for all vector fields $X, Y, Z \in \chi(M)$. Here \tilde{R} and \tilde{S} denotes the curvature tensor and Ricci tensor of the manifold M with semi-symmetric.metric connection $\widetilde{\nabla}$ respectively.

Theorem 5.1 A 3-dimensional f-Kenmotsu manifold is always दyprojectively flat.
Proof. Let M ba a 3-dimensional f-Kenmotsu manifold. The Riemannian curvature tensor $R(X, Y) Z$ and Riccio tensor $S(X, Y)$ in 3 -dimensional f-Kenmotsu manifold is defined as,
and

$$
\begin{aligned}
R(X, Y) Z= & \left(\frac{r}{2}+2 f^{2}+2 f^{\prime}\right)(X \wedge Y) Z-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right)(\eta(X)(\\
& +\eta(Y)(X \wedge \xi) Z)
\end{aligned}
$$

$$
S(X, Y)=\left(\frac{r}{2}+f^{2}+f^{\prime}\right) g(X, Y)-\left(\frac{r}{2}+3 f^{2}+3 f^{\prime}\right) \eta(X) \eta(Y)
$$

where r is the scalar curvature and $f^{\prime}=\xi f$.
From equation (5.6) putting $Z=\xi$, we have

$$
R(X, Y) \xi=-\left(f^{2}+f^{\prime}\right)[\eta(Y) X-\eta(X) Y]
$$

$$
\begin{equation*}
S(X, \xi)=-2\left(f^{2}+f^{\prime}\right) \eta(X) \tag{5.9}
\end{equation*}
$$

using equations (5.8) and (5.9) ,in equation(5.5), we have

$$
\tilde{P}(X, Y) \xi=0
$$

which shows that a 3-dimensional f-Kenmotsu manifold is always ξ-projectively flat.
Theorem 5.2. If the Ricci tensor \tilde{S} of a 3-dimensional f-Kenmotsu manifold M endowed with a semisymmetric metric connection $\widetilde{\nabla}$ is η-parallel. Then the following results on M are equivalent, i) Riccio tensor is cyclic parallel,
ii) $\tilde{S}(Y, Z)=-2(n-1) g(Y, Z)$,
iii) $\tilde{r}=-2 n(n-1)$

Proof (i): Let M be a f-Kenmotsu manifold with respect to semi-symmetric metric connection. We have

$$
\begin{align*}
& \eta(\xi)=1 \tag{5.11}\\
& \phi^{2}=-I+\eta \otimes \xi \tag{5.12}\\
& g(X, Y)=g(\phi X, \phi Y)+\eta(X) \eta(Y) \tag{5.13}\\
& S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{5.14}\\
& \tilde{S}(Y, Z)=S(Y, Z)-(3 n-5) g(Y, Z)+2(n-2) \eta(Y) \eta(Z) \tag{5.15}
\end{align*}
$$

from equations (5.11),(5.12),(5.13),(5.14) and (5.15), we get

$$
\begin{equation*}
\tilde{S}(\phi Y, \phi Z)=\tilde{S}(Y, Z)+2(n-1) \eta(Y) \eta(Z) \tag{5.16}
\end{equation*}
$$

now differentiating covarinatly equation (5.16) with respect to X, then we have

$$
\begin{equation*}
\widetilde{\nabla}_{X} \tilde{S}(\phi Y, \phi Z)=\widetilde{\nabla}_{X} S(Y, Z)-\tilde{S}\left(\widetilde{\nabla}_{X}(\phi Y), \phi Z\right)-\tilde{S}\left(\phi Y, \widetilde{\nabla}_{X}(\phi Z)\right) \tag{5.17}
\end{equation*}
$$

and since we clearly have

$$
\begin{equation*}
\widetilde{\nabla}_{X} \tilde{S}(\phi Y, \phi Z)=\widetilde{\nabla}_{X} \tilde{S}(Y, Z) \tag{5.18}
\end{equation*}
$$

after some calculation , we get

$$
\begin{align*}
& \widetilde{\nabla}_{X} \tilde{S}(Y, Z)^{=}=-2 \eta(Y) \tilde{S}(X, Z)+\eta(Z) \tilde{S}(X, Y) \tag{5.19}\\
& \widetilde{\nabla}_{Y} \tilde{S}(Z, X)=-2 \eta(Z) \tilde{S}(Y, X)+\eta(X) \tilde{S}(Y, Z)
\end{align*}
$$

$$
\begin{equation*}
-4(n-1) \eta(Z) g(Y, X)+\eta(X) g(Y, Z) \tag{5.20}
\end{equation*}
$$

$$
\hat{\nabla}_{Z} \tilde{S}(X, Y)=-2 \eta(X) \tilde{S}(Z, Y)+\eta(Y) \tilde{S}(Z, X)
$$

$$
\begin{equation*}
-4(n-1) \eta(X) g(Z, Y)+\eta(Y) g(Z, X) \tag{-5.21}
\end{equation*}
$$

now adding equations (5.19),(5.20) and (5.21) then we have,

$$
\widetilde{\nabla}_{X} \tilde{S}(Y, Z)+\widetilde{\nabla}_{Y} \tilde{S}(Z, X)+\widetilde{\nabla}_{Z} \tilde{S}(X, Y)=0
$$

i.e Riccil tensor \tilde{S} is cyclic parallel.

Proof (ii): We know that

$$
\begin{equation*}
\eta(\xi)=1, \phi^{2}=-I+\eta \otimes \xi \tag{5.23}
\end{equation*}
$$

we have

$$
\begin{aligned}
& S(X, \xi)=-(n-1) \eta(X) \\
& \tilde{S}(Y, Z)=S(Y, Z)-(3 n-5) g(Y, Z)+2(n-2) \eta(Y) \eta(Z) \\
& \tilde{S}(Y, \xi)=-2(n-1) \eta(Y)
\end{aligned}
$$

we know that

$$
\eta(X)=g(X, \xi)
$$

so we have,

$$
\tilde{S}(Y, \xi)=-2(n-1) g(Y, \xi)
$$

Proof (iii): Let $e_{i}, i=1,2,3, \ldots n$ be an orthonormal basis of the tangent space at any point of the f Kenmotsu manifold M. Putting $Y=Z=e_{i}$ in equation(5.28) and taking summation over $\mathrm{i}, 1<\mathrm{i}<\mathrm{n}$, then we get

$$
\begin{equation*}
\tilde{r}=-2 n(n-1) \tag{5.29}
\end{equation*}
$$

Theorem 5.3 In a 3-dimensional f-Kenmotsu manifold M with Levi-civita connection ∇, we have

$$
\begin{equation*}
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \tag{5.30}
\end{equation*}
$$

Proof. Let M be a 3-dimensional f-Kenmotsu manifold with semi-symmetric metric connection ∇. we know that Ricci curvature tensor

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{5.31}
\end{align*}
$$

In similar way we have

$$
R(Y, Z) X=g(Z, X) Q Y-g(Y, X) Q Z+S(Z, X) Y-S(Y, X) Z ~ Z ~-\frac{r}{2}(g(Z, X) Y-g(Y, X) Z)
$$

$$
\begin{gather*}
\left.R(Z, X) Y=g(X, Y) Q Z-g(Z, Y) Q X+S(X, Y) Z-S\left(Z_{X} Y\right) X\right] \tag{5.33}\\
-\frac{r}{2}(g(X, Y) Z-g(Z, Y) X),
\end{gather*}
$$

On adding equation (5.31),(5.32),(5.33) , we have

so wave have,

$$
g(Z, X)=g(X, Z), \quad S(X, Y)=S(Y, X)
$$

$$
\begin{equation*}
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \tag{5.35}
\end{equation*}
$$

6 Example

We consider a 3-dimensional f-Kenmotsu manifold with semi-symmetric metric connections

$$
\begin{equation*}
\widetilde{M}=\left[x_{1}, x_{2}, t \in R^{3}: t \neq 0\right] \tag{}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, t\right)$ are the standadrd coordinates in R. Let us choose the vector fields

$$
\begin{align*}
& e_{1}=t^{2} \frac{\partial}{\partial x_{1}}, \tag{6.2}\\
& e_{2}=t^{2} \frac{\partial}{\partial x_{2}} \tag{6.3}
\end{align*}
$$

$$
\begin{equation*}
e_{3}=\frac{\partial}{\partial_{t}^{\prime}} \tag{6.4}
\end{equation*}
$$

which are linearly independent at each point of \widetilde{M}. Now we define the metric g such that e_{1}, e_{2}, e_{3} is an orthonormal basis of \widetilde{M} i.e,

$$
\begin{equation*}
=0 \quad \text { if } \quad i \neq j, \quad \text { where } \quad 1<i, j<3 \tag{6.5}
\end{equation*}
$$

Now consider a 1-form η which is defined by

$$
\eta(X)=g\left(X, e_{3}\right), \quad X \in \chi(\widetilde{M})
$$

We choose $e_{3}=\xi$. We define the tensor field ϕ by $\phi\left(e_{1}\right)=-e_{2}, \phi\left(e_{2}\right)=e_{1}, \phi\left(e_{3}\right)=0$.
The linear property of g and ϕ showing that

$$
\begin{equation*}
\eta\left(e_{3}\right)=1, \quad \phi^{2}(X)=-X-\eta(X) e_{3}, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{6.6}
\end{equation*}
$$

for any vector fields X, Y an \hat{M}. Then $\tilde{M}(\dot{\phi}, \bar{\xi}, \eta, g)$ forms an almost contact manifold with $e_{3}=\xi$. Let ∇ be the levi-civita connection with respect to the metric g "then we have

$$
\begin{equation*}
\left[e_{3}, e_{i}\right]=\frac{2}{t} e_{i} \quad, i=1,2,3 \quad \text { and } \quad\left[e_{i}, e_{j}\right]=0 \tag{6.7}
\end{equation*}
$$

otherwise. Now using Koszul's formula, we get

$$
\begin{align*}
& \nabla_{e_{1}} e_{1}=(2 / t) e_{3}, \tag{6,8}\\
& \nabla_{e_{1}} e_{3}=-(2 / t) e_{1}, \tag{6.9}\\
& \nabla_{e_{2}} e_{3}=-(2 / t) e_{2}, \\
& \nabla_{e_{2}} e_{2}=(2 / t) e_{3}, \tag{6.1.1}\\
& \nabla_{e_{3}} e_{3}=(2 / t) e 1, \tag{6.12}\\
& \nabla_{e_{i}} e_{j}=0, \text { otherwise. }
\end{align*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=f(X-\eta(X) \xi) \tag{6.14}
\end{equation*}
$$

1
$\xi=e_{3}$ 0 , so that the manifold is called regular f-Kenmotsu manifold. Let M be a subset of \widetilde{M} and consider the immersion $h: M \rightarrow \widetilde{M}$ defined by $h\left(x_{1}, x_{2}, t\right)=\left(x_{1}, x_{2}, 0,0, t\right)$. It is easy to prove that $M=$ ($\left.\bar{x}_{1}, x_{2}, t\right) \in R^{3}: t \neq 0$ is a subamnifold \widetilde{M} where $\left(x_{1}, x_{2}, t\right)$ are the standard coordinates of $\left(e_{1}, e_{2}, e_{3}\right)$. now we choose the vector fields such as

$$
\begin{align*}
& e_{1}=t^{2} \frac{\partial}{\partial x_{1}} \tag{6.15}\\
& e_{2}=t^{2} \frac{\partial}{\partial x_{2}}, \tag{6}\\
& e_{3}=\frac{\partial}{\partial t} . \tag{6.17}
\end{align*}
$$

We define g_{1} such that $\left[e_{1}, e_{2}, e_{3}\right]$ is an orthonormal basis of M . that is,

$$
\begin{align*}
g_{1}\left(e_{i}, e_{j}\right) & =1 & & \text { if } \tag{6.18}\\
& =0 & & \text { if } \tag{6.19}
\end{align*} \quad i=j, ~ i \neq j, ~ \$
$$

where i, j
$=1,2,3$.

We define a 1-form η_{1} and a (1,1)tensor ϕ_{1} as,

$$
\begin{equation*}
\eta_{1}=g_{1}\left(X, e_{3}\right), \quad \phi_{1}\left(e_{1}\right)=-e_{2}, \quad \phi_{1}\left(e_{2}\right)=e_{1}, \quad \phi_{1}\left(e_{3}\right)=0 \tag{6.20}
\end{equation*}
$$

The linearity property of g_{1} and ϕ_{1} shows that

$$
\begin{align*}
& \eta_{1}\left(e_{3}\right)=1, \quad \phi^{2} X=-X+\eta_{1}(X) e_{3} \tag{6.21}\\
& g_{1}\left(\phi_{1} X, \phi_{1} Y\right)=g_{1}(X, Y)-\eta_{1}(X) \eta_{1}(Y) \tag{6.22}
\end{align*}
$$

for any vector fields X, Y on $M\left(\phi_{1}, \xi, \eta_{1}, g_{1}\right)$. It is seen that M is manifold of \widetilde{M} with $e_{3}=\xi$. Moreover, let ∇ be the Levi-civita connection with respect to the given metric g_{1} [3][4].
Then we have following results

$$
\begin{equation*}
\left.\left[e_{3}, e_{i}\right]=\frac{2}{t} e_{i}, i=1, z \quad \text { and }\right]-\left[e_{i}, e_{j}^{-}\right]=0_{3}^{-} \text {otherwise. } \tag{6.23}
\end{equation*}
$$

Again using Koszul's formula, we obtain the following

$$
\begin{align*}
& \nabla_{e_{1}} e_{1}=\left(\frac{2}{t}-1\right) e_{3} \tag{6.24}\\
& \nabla_{e_{1}} e_{3}=\left(\frac{-2}{t}+1\right) e_{1}, \tag{6:25}\\
& \nabla_{e_{2}} e_{3}=-\frac{2}{t} e_{3}+e 2, \tag{6.26}\\
& \nabla_{e_{2}} e_{2}=\left(\frac{2}{t}-1\right) e_{3} \tag{6.27}\\
& \nabla_{e_{i}} e_{j}=0, \text { otherwise }
\end{align*}
$$

References

-- ${ }^{\text {a }}$
[1] A.Friedman and J.A.Schouten, Uber die geometric derhalbsymmetrischen
. Zeitscr.,21(1924),211-223.
[2]A. Shafrudddin and S.I.Husain,Semi-symmetric metric connections in almostcontact manifolds N.S.30(1976),133-139.

1 - -
[3].A.Yildiz,U.C.De and M.Turan, On 3-diemnsional f-Kenmotsu manifolds and Ricci solitons ,Ukrainian Matkematical J.,65(2013),620-628.

4] C.Murathan, K.Arslan and E.Ezentas, Ricci generalizespseudo-symmetric immersions ,Differential geometry anhd its applications ,Matfyzpress, Prague,99-108(2005).
[5] D.Janssens, L.Vanhecke ,Almost contact structure and curvature tensor, Kodai Math J, 4(1981),1-27.
[6] K.Kenmotsu A class of almost contact Riemannian manifolds, Tohuku Math. 24(1972),93-103.
[7] K.Yano, and M.Kon, Structures on manifoldsWorld Scientific publication,1984.
[8] M.M.Boothby and R.C.Wong, On Contact manifolds ,Anna.Math.68(1958),421-450.
[9] M.Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math.Sem. Repors,25(1973),330-336.
[10] S.Golab, On a semi-symmetric and quarter-symmetric linear connections,Tensor,N.S., 29(1975),249-
254.
[11] S.Mukhopadhyay, A.K.Roy, and B.Barua ,Some properties of a quarter-symmetric metric connection on a Riemannian manifold, Soochow J. of Math.,17(1991),205-211.
[12] T.Demirli,C.Ekici and A.Gorgulu,Ricci solitons in f-Kenmotsu manifolds with the semi-symmetric nonmetric connection,New Trends in Mathematical Sci.,4(2016),276-284.
[13] W.Roter, On conformally recurrent Ricci -reccurent manifolds , Colloq Math.,46(1982),45-57.
[14] Z. Olszak and R.Rosca, Normal locally conformal almost cosympletic manifolds ,Publications

