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Abstract - Image inpainting is the interpolation of missing or damaged portions of images employing information from the boundary 

and adjacent areas. Several fourth order Partial Differential Equation (PDE) based models are available in the literature to solve the 

inpainting problem, e.g., various Curvature Driven Diffusion methods, Cahn Hilliard Equation, TV-H-1 etc. This paper presents a new 

fourth order PDE for image inpainting based on TV-H-1 coupled with the edge enhancing structure tensor. The edge enhancing 

structure tensor has been extensively used by J. Weickert in his formulation of anisotropic diffusion equation. It enhances diffusion in 

homogenous regions but prohibits diffusion across edges. The results indicate that the proposed method generates far better results 

than state-of-the-art methods. 

 

 

Index Terms - Image inpainting, Total Variation, Structure Tensor, Sobolev Dual Space, Cahn–Hilliard equation  

 

I. INTRODUCTION 

Image Inpainting is filling in missing parts of damaged images based on information extracted from surrounding areas. This problem 

can be considered an interpolation problem. The image inpainting problem has a wide range of applications, from restoring antique 

paintings to reducing specular reflections in biomedical images and many others. 

Mathematically, image inpainting is the problem of reconstructing the image 𝑢 from a given damaged image 𝑓. The image domain is 

denoted by Ω, and the damaged domain is denoted by 𝐷 ⊂ 𝛺, i.e., 𝐷 is a subset of the image domain Ω. 

Many mathematical inpainting models have been proposed in the last few decades, e.g., exemplar-based inpainting, stochastic, 

wavelet, and interpolation methods. But it was the PDE-based models which gained more popularity. 

Bertalmio et al. [1] was the pioneer in this domain. They devised a nonlinear PDE model which propagated image information (the 

Laplacian of the image) in the direction of the sharp isophotes (lines of the same grey values, typically edges) continuously into the 

interior of the regions to be inpainted. This PDE model is known as transport inpainting model. 

Subsequently, more PDE-based models for image inpainting were devised, such as the Total Variation (TV) models [2], [3] proposed 

by Rudin, Osher and later by Chan and Shen, were second order PDEs. It was found that these image inpainting models could not 

connect the edges over longer distances or smoothly propagate isophotes into the damaged areas. Another third-order variational 

approach was devised, which was named Curvature Driven Diffusion (CDD) method [4], [5]. Still, it was found that this method may 

introduce artefacts in the isophotes along the boundary of the inpainting areas.  

All these drawbacks in these models point to the fact that higher-order PDE models are needed for better inpainting performance. 

Consequently, several fourth order PDE models like the Cahn-Hilliard model and TV-H-1 model are proposed for image inpainting 

[6], [7]. 

This paper proposes a fourth order PDE model for image inpainting based on TV-H-1 equation coupled with Edge Enhancing 

Structure Tensor. The proposed model is evaluated on several grayscale images. The visual results as well as performance measures 

show that the proposed model produces better inpainting results in less computational time than the Cahn Hilliard Perona Malik 

model [8] for grayscale images. The results also suggest that the proposed model is better than many state-of-the-art PDE-based 

image inpainting models. 

 

II. LITERATURE SURVEY 

 

CAHN-HILLIARD INPAINTING MODEL 

 

The Cahn Hilliard Inpainting model discussed in [6] is applicable only for black and white images, i.e., images with pixel values of 

either 0 or 1. 

Let 𝑓(𝑥⃗) where 𝑥⃗ = (𝑥, 𝑦), denote the image intensity function of the given image in the domain Ω, and let D ⊂ Ω be the domain of 

inpainting. Let 𝑢(𝑥⃗, 𝑡) evolve in time to become a fully inpainted version of 𝑓(𝑥⃗) ∈ 𝐿2(Ω) under the following equation: 

 

 𝜕𝑢

𝜕𝑡
= 𝛥 (−𝜖𝛥𝑢 +

1

𝜖
𝑊′(𝑢)) + 𝜆0𝟙Ω\𝐷(𝑓 − 𝑢) 

(1) 
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Where 𝟙Ω\𝐷(𝑥⃗) is the characteristic function of the complement of the inpainting domain 

 
𝟙Ω\𝐷(𝑥⃗) = {

0
1

  ⅈ𝑓 𝑥⃗ ∈ 𝐷     

  ⅈ𝑓 𝑥⃗ ∈ Ω\𝐷
 

(2) 

The constant 𝜆0 ≫ 1 maintains the inpainted image close to the original image in Ω\𝐷. The function 𝑊(𝑢) in Eq. (1) is a double well 

potential function with wells at 𝑢 = 0 and 𝑢 = 1, as binary images are only considered. In the current discussion, the double well 

potential function 𝑊(𝑢) = 𝑢2(𝑢 − 1)2 is used, though, the use of other functions is also possible. 

 

TV-H-1 INPAINTING MODEL 

 

The Total Variation of a 𝐶1(Ω̅) function 𝑢 defined on a bounded open set 𝛺 ⊆ ℝ𝑛 with boundary 𝜕Ω of class 𝐶1 can be expressed as 

 
𝑉(𝑢, Ω) = ∫|𝛻𝑢(𝑥⃗)| ⅆ𝑥⃗

𝛺

 
(3) 

The Total Variation based noise removal algorithm proposed by Rudin et al. [2] for a given image 𝑓 is a 𝐿2 gradient flow of the Total 

Variation functional, which, along with the regularizing term, generates the evolution equation 

 

 𝜕𝑢

𝜕𝑡
= 𝛻. (

𝛻𝑢

|𝛻𝑢|
) + 𝜆0(𝑓 − 𝑢) 

(4) 

Since the Cahn-Hilliard inpainting model is only for binary images, Burger made a generalization of gray value images et al. [7], 

termed the TV-H-1 inpainting model based on similar lines with the Cahn-Hilliard equation. This model is termed TV-H-1 inpainting 

model and it follows the evolution equation 

 

 𝜕𝑢

𝜕𝑡
= −𝛥 (𝛻. (

𝛻𝑢

|𝛻𝑢|
)) + 𝜆0𝟙Ω\𝐷(𝑓 − 𝑢) 

(5) 

In practice, to avoid dividing by 0 in Eq. (4) and (5), √|𝛻𝑢|2 + 𝛿2 is used instead of |𝛻𝑢|. Thus, the double well potential function has 

been dropped which makes the equation suitable for grayscale images. But, from the experimental results in [7], we can see that a 

better model is needed to make the edges even more smooth. 

 

TENSOR BASED ANISOTROPIC DIFFUSION 

 

The heat equation is 

 𝜕𝑢

𝜕𝑡
= 𝛻. (𝑐𝛻𝑢) 

(6) 

Where 𝑐 is a constant. Here, the flux 𝑗 = − 𝑐𝛻𝑢 is always parallel to 𝛻𝑢. If there is a need to orient the flux towards interesting 

features, then the flux should be 𝑗 = − 𝐷𝛻𝑢, where 𝐷 ∈ ℝ2𝑥2 is the Diffusion Tensor [9], [10]. In that case the diffusion equation 

becomes 

 

 𝜕𝑢

𝜕𝑡
= 𝛻. (𝐷𝛻𝑢) 

(7) 

where 
 

𝐷 = [
ⅆ11 ⅆ12

ⅆ21 ⅆ22
] 

 

 

STRUCTURE TENSOR 

 

A simple structure descriptor is given by 𝛻𝑢𝜎, the gradient of a Gaussian smoothed version of 𝑢: 

 
 

𝐾𝜎(𝑥⃗) =
1

2𝜋𝜎2
ⅇ

−(𝑥2+𝑦2)

2𝜎2  
(8) 

 
 𝑢𝜎(𝑥⃗, 𝑡) = 𝐾𝜎(𝑥⃗) ∗ 𝑢(𝑥⃗, 𝑡) (9) 

The standard deviation 𝜎 denotes the noise scale, since it makes the edge detector ignorant of details smaller than 𝑂(𝜎). The 𝛻𝑢𝜎 is 

useful for detecting edges. To make the structure descriptor invariant under sign changes, we may replace 𝛻𝑢𝜎 by its tensor product 

 

 
𝐽0(𝛻𝑢𝜎) =  𝛻𝑢𝜎 ⊗ 𝛻𝑢𝜎 =  𝛻𝑢𝜎𝛻𝑢𝜎

𝑇 = [
𝑢𝜎𝑥

2 𝑢𝜎𝑥
𝑢𝜎𝑦

𝑢𝜎𝑥
𝑢𝜎𝑦

𝑢𝜎𝑦
2 ] 

(10) 

The matrix 𝐽0(𝛻𝑢𝜎) has eigenvalues |𝛻𝑢𝜎|2 and 0 and corresponding eigenvectors 𝑣1 || 𝛻𝑢𝜎  and 𝑣2 ⊥ 𝛻𝑢𝜎 . 
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EDGE ENHANCING DIFFUSION TENSOR 

 

A diffusion tensor can be created which will enhance diffusion along the edges, i.e., along 𝑣2 ⊥ 𝛻𝑢𝜎 and minimize diffusion along 

𝑣1 || 𝛻𝑢𝜎, since |𝛻𝑢𝜎|2 will have a high value across the edges. Thus, the eigenvalues are chosen as 

 
 

𝜇1 = ⅇ
−|𝛻𝑢𝜎|2

𝑘2  
𝜇2 = 1 

(11) 

The diffusion tensor 𝐷 is now constructed as 

 
𝐷(𝐽0(𝛻𝑢𝜎)) = [𝑣1 𝑣2] [

𝜇1 0
0 𝜇2

] [
𝑣1

𝑇

𝑣2
𝑇] 

(12) 

where 𝑣1 and 𝑣2 are the orthogonal eigenvectors of 𝐽0(𝛻𝑢𝜎). These are discussed in detail in [9], [10]. 

 

 

EDGE ENHANCING ANISOTROPIC DIFFUSION 

 

From Eq. (7), (10), (11) and (12), the Edge Enhancing Anisotropic Diffusion equation is formulated in [9], [10] as 

 

 𝜕𝑢

𝜕𝑡
= 𝛻. (𝐷 (𝐽𝜌(𝛻𝑢𝜎)) 𝛻𝑢) 

 
𝑢(𝑥⃗, 0) = 𝑓(𝑥⃗) 

(13) 

 

III. PROPOSED INPAINTING MODEL – EDGE ENHANCING TV-H-1 EQUATION 

 

The proposed model is TV-H-1 inpainting equation coupled with the edge enhancing diffusion tensor thus generating the equation 

 

 𝜕𝑢

𝜕𝑡
= −𝛥 (𝛻. (𝐷 (𝐽𝜌(𝛻𝑢𝜎))

𝛻𝑢

|𝛻𝑢|
)) + 𝜆0𝟙Ω\𝐷(𝑓 − 𝑢) 

(14) 

The boundary conditions in Eq. (14) are set to 

 𝛻𝑢. 𝑛⃗⃗ =  𝛻(𝛥𝑢). 𝑛⃗⃗ = 0 𝑜𝑛 𝜕Ω (15) 

 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The results of the experiments will be compared against other popular PDE-based image inpainting methods like the Transport 

Inpainting model proposed by Bertalmio et al. [1], TV-H-1 model proposed by Burger et al. and Cahn-Hilliard Perona Malik model 

proposed by Zou [8]. The results have been compared quantitatively based on four metrics: Mean Square Error (MSE), Peak Signal to 

Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Relative L2 Error as discussed in [11]. The numerical schemes 

used were in line with what is discussed in [12]. The grayscale images are shown in Figure 1 and the results with two types of 

damages shown in Figure 2. The parameter settings are mentioned in Table 1, the quantitative error estimates in Table 2. 

 

 

 

 

 

 

   
a. Cameraman b. Lena c. Peppers 

 

FIGURE 1: Three grayscale testing images 
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Image Method Parameters settings 

Cameraman #1 

Transport ε = 10-10, M = 40, N = 2 

TV-H-1 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 5 

Cahn-Hilliard Perona-Malik ε = [200, 0.8], C1 = 800, C2 = 𝜆 = 350 

Proposed model 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 10, k = 0.1, σ=1 

Cameraman #2 

Transport ε = 10-10, M = 40, N = 2 

TV-H-1 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 5 

Cahn-Hilliard Perona-Malik ε = [200, 0.8], C1 = 500, C2 = 𝜆 = 280 

Proposed model 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 10, k = 0.1, σ=1 

Lena #1 

Transport ε = 10-10, M = 40, N = 2 

TV-H-1 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 5 

Cahn-Hilliard Perona-Malik ε = [200, 0.8], C1 = 650, C2 = 𝜆 = 250 

Proposed model 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 10, k = 0.1, σ=1 

Lena #2 

Transport ε = 10-10, M = 40, N = 2 

TV-H-1 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 5 

Cahn-Hilliard Perona-Malik ε = [200, 0.8], C1 = 500, C2 = 𝜆 = 250 

Proposed model 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 10, k = 0.1, σ=1 

Peppers #1 

Transport ε = 10-10, M = 40, N = 2 

TV-H-1 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 5 

Cahn-Hilliard Perona-Malik ε = [200, 0.8], C1 = 800, C2 = 𝜆 = 300 

Proposed model 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 10, k = 0.1, σ=1 

Peppers #2 

Transport ε = 10-10, M = 40, N = 2 

TV-H-1 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 5 

Cahn-Hilliard Perona-Malik ε = [200, 0.8], C1 = 500, C2 = 𝜆 = 70 

Proposed model 𝛿 = 0.01, C1 = 1000, C2 = 𝜆 = 10, k = 0.1, σ=1 

TABLE 1: Parameters settings 

 

Image 

 

Method 

Mean 

Square 

Error 

PSNR SSIM 
Relative 

L2 Error 

CPU 

Time 

(secs) 

Cameraman #1 

Transport 0.011 19.5683 0.6966 0.0839 222.063 

TV-H-1 0.0029 24.1291 0.9191 0.0462 109.873 

Cahn-Hilliard Perona Malik 0.0038 24.2502 0.8652 0.0503 337.998 

Proposed model 0.0021 26.7325 0.9249 0.0452 110.377 

Cameraman #2 

Transport 0.0104 19.8391 0.6778 0.0799 226.034 

TV-H-1 0.0019 25.4859 0.9248 0.0279 117.229 

Cahn-Hilliard Perona Malik 0.0033 24.8516 0.8826 0.0421 342.74 

Proposed model 0.0016 27.9891 0.9447 0.0261 113.8 

Lena #1 

Transport 0.0128 18.9296 0.6364 0.1161 226.198 

TV-H-1 0.0018 26.1292 0.9061 0.0395 101.974 

Cahn-Hilliard Perona Malik 0.0034 24.7148 0.8364 0.0538 348.554 

Proposed model 0.0018 27.7685 0.9214 0.0383 122.231 

Lena #2 

Transport 0.0115 19.4052 0.6302 0.1021 226.318 

TV-H-1 0.0036 24.3243 0.9081 0.0486 102.881 

Cahn-Hilliard Perona Malik 0.0052 22.8038 0.8338 0.0538 340.31 

Proposed model 0.0034 24.7794 0.9152 0.0473 126.867 

Peppers #1 

Transport 0.0115 19.3851 0.6519 0.0846 226.669 

TV-H-1 0.0018 27.4839 0.9031 0.0549 108.629 

Cahn-Hilliard Perona Malik 0.0025 26.0352 0.8737 0.0362 345.192 

Proposed model 0.0017 28.6112 0.9216 0.0359 107.088 

Peppers #2 

Transport 0.0153 18.1539 0.6002 0.0986 226.457 

TV-H-1 0.0011 29.6866 0.9365 0.0215 102.945 

Cahn-Hilliard Perona Malik 0.0025 26.0724 0.8857 0.0314 344.587 

Proposed model 0.0021 30.3249 0.9612 0.0205 113.724 
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TABLE 2: Report for Image Inpainting 

 

 

     
Damaged #1 Transport TV-H-1 Cahn-Hilliard 

Perona-Malik 

Proposed model 

     
Damaged #2 Transport TV-H-1 Cahn-Hilliard 

Perona-Malik 

Proposed model 

     
Damaged #1 Transport TV-H-1 Cahn-Hilliard 

Perona-Malik 

Proposed model 

     
Damaged #2 Transport TV-H-1 Cahn-Hilliard 

Perona-Malik 

Proposed model 

     
Damaged #1 Transport TV-H-1 Cahn-Hilliard 

Perona-Malik 

Proposed model 

     
Damaged #2 Transport TV-H-1 Cahn-Hilliard 

Perona-Malik 

Proposed model 

     

FIGURE 2: Inpainting Results with different algorithms 

 

 

 

V. CONCLUSION 

In this paper, we introduced a new image inpainting model based on TV-H-1 coupled with Edge Enhancing Structure Tensor. We 

executed the proposed model on commonly used grayscale images. The numerical experiments show that the proposed inpainting 

model works better than most of the accepted PDE models for image inpainting. 
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