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Abstract - In our analogy, the upper Area under Curve (AUC) represents the healthier characteristic between the subject/patient with 

the disease and without the disease. Receiver Operating Characteristic (ROC) curve was used to obtain the superiority of 

categorization in numerous health disorders. We used Bayesian methodology to the evaluation based on AUC for Exponential 

Distribution through Jeffrey’s Prior Information. Finally, the simulation studies and an illustrative example demonstrate the 

theoretical results discussed. 
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I. INTRODUCTION  

In this paper, the Bayesian inference of the exponential AUC is of main interest.  Lavanya et.al. (2016, 2017) discussed the Bayesian 

Estimation of Constant Shape Bi-Weibull AUC. The key purpose of this paper is to compare the Bayesian estimate of AUC values by 

the use of Jeffrey’s three loss functions. 

 

Assume that there are binary clusters of patients: ill-healthy and healthy. Firstly, the continuous biomarker is denoted as S. The True 

Positive Probability (TPP) namely P(S│I)  is the proportion of ill-healthy subjects detected by the diagnostic test. On the other hand, 

the False Positive Probability (FPP) namely P(S│H) is the proportion of healthy subjects detected by a diagnostic test. Let α and β be 

the experiment scores detected from two populations, namely, ill-healthy individuals and healthy individuals respectively which 

follow exponential distributions. The density functions of exponential distributions are as follows  
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where
I and 

H  are the scale parameters of ill-healthy and healthy populations respectively. 

The ROC curve be represented as     ,
b
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The accurateness based on diagnostic trial can be described by AUC. Moreover, the AUC value is always lies between zero and one. 

If AUC is range from 0.5 to 1 then it is a perfect classifier and if AUC is less than 0.5 then it considered as worst case of 

classification. Thus, AUC is defined as 
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Now AUC for exponential distribution is        
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This paper is organized as follows: In Section II, the Bayesian estimation of AUC under Jeffrey’s Prior Information deliberated. 

Section III and IV, provide simulation study and an illustrative example for the proposed theoretical results. Conclusions are given in 

Section V. 

II. BAYESIAN ESTIMATION OF AUC 

Bayesian estimation method has received a lot of attention for evaluating data. The Bayesian estimation approach is availed when 

prior knowledge about the parameters as well as the data is available. In case, prior information about the parameter does not exist, it 

is possible to make use of the non-informative prior in Bayesian analysis which is introduced by C. B. Guure et.al. (2012). Now this 

case, we introduce a non-informative prior method for estimating the parameters. Let 1 2, ,..., m   is a sample taken randomly from 

 IE   and one more sample 
1 2, ,..., n   is taken randomly from  HE  . 

 

The likelihood function based on particular sample is given by 
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where 𝑡 = (𝜂𝐼 , 𝜂𝐻)′ .  
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The log-likelihood function is obtained as   
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2.1 Jeffrey’s Prior information 

 

The Jeffrey's prior concept is used for invariance according to Sinha (1986). By presenting Jeffrey’s Prior information such that 
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Thus likelihood function from equation (4) becomes,  
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The joint posterior distribution of the parameter   based on Baye’s theorem is 
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Here, the posterior density function (pdf) is achieved properly based on normalizing constant k by using equation (6). Also, to 

estimate the AUC values we availed three Loss functions, namely Linear and Exponential (LINEX), General Entropy (GE) and 

Squared Error (SE) Loss functions. 

 

2.1.1 AUC for LINEX Loss Function  

 

The LINEX Loss function is one of the Asymmetric Loss functions for which minimal loss attains at t̂ t , which is given as 

      ˆ ˆ ˆexp 1,L t t l t t l t t       

where t̂  is an estimation of t and l is the shape parameter which is different from 0.  

 

Also, the sign and magnitude of the ‘l’ represents the direction and degree of symmetry respectively.  

 

If 0l   then there is overestimation and if 0l  then there is underestimation. Moreover, the LINEX loss function is same as the 

Squared Error Loss function when 0l  . 

 

According to Pandey et.al. (2011), the posterior expectation is  
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The estimate ĴLt denotes the Bayes Estimator of t under LINEX Loss Function and it is formed as   
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From equation (7), we detected the fraction of integrals which cannot be obtained systematically. Further to estimate the parameters 

we considered Lindley’s approximation method. 

 

The ratio of integral according to Abdel-Wahid (1987), is  
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where  L t  is the log-likelihood function and the arbitrary functions of t are  w t  and  v t . Now, by concerning Lindley’s method, it 

is assumed that  v t remains the prior distribution for t and      w t u t v t ,  u t which is the actuality certain function.  

 

Now, based on Lindley’s method for estimating parameters we considered the following equation as 
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Here L is the log-likelihood based on (5). 

 

Now based on equation (8), the first and second order derivatives for
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Finally, the obtained Bayes estimator for AUC through LINEX Loss function is 
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2.1.2 AUC for General Entropy Loss Function 

 

The General Entropy (GE) Loss is another type of asymmetric loss function that clearly explains the Entropy Loss and it is given as 
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Similarly based on equation (8), the first and second order derivatives for 
1

 and 
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 are derived which are given as 
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Finally, the Bayes estimator for AUC through GE loss is given by 
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2.1.3 AUC for Symmetric Loss Function 

The symmetric loss function which is known as SE Loss function is    
2

ˆ ˆL t t t t   .  The nature of this Loss function is 

symmetric, that is, it gives the same weight age to mutually over and under estimation. In tangible lifetime, we come upon numerous 

situations somewhere over estimation might be more severe than under estimation and vice versa. The SE which is also called squared 

error function is the most common loss function in Bayesian estimation.  

The squared error loss is specified as     
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In the same way based on equation (8), the first and second order derivatives for
1

 and 
H

  are derived which are given as 

10 20 01 02, 1, 0,I

I

u
u u u u u




     


  

01 02 10 20, 1 and 0.H

H

u
u u u u u




     



 
 

Hence, the necessary estimation for AUC based on SE loss is given as  
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III. SIMULATION STUDY 

The key reason for conducting the simulations is to demonstrate exactly how the exponential AUC values owns different values based 

on scale parameters of the ill-healthy and healthy distributions change. Moreover, the AUC is obtained based on each parameter 

mixture and sample size. 

 

Now, we picked a sample of size (n) is equivalent to 25, 50 and 100 that denoting moderately lesser, intermediate and huge data set. 

Also, based on Bayes estimation using Jeffrey’s method the parameters were determined. Also, the parameter values are preferred as

0.8 and 1.8
H I

   . The parameters based on loss function are preferred as 0.2 and 1.2.l k l k       

 

In Table 1, we obtained the expected values for AUC based on Bayesian Estimation using Jeffrey’s prior information by means of 

Jeffery’s LINEX Loss function(JL), Jeffery’s General Entropy Loss function (JG) and Jeffery’s Squared Error Loss function(JS).  

 

Table 1: Estimated AUC values based on Jeffrey’s prior information 

 

Sample 

size 

 

I

 
H

   

 

 

 

 

 

 

 
 

2.0 kl  2.0 kl  2.1 kl  2.1 kl  

(25,25) 1.8 0.8 0.6980 0.4484 0.4551 0.5543 0.5438 0.2530 0.2401 0.8087 0.7298 

(50,50) 1.8 0.8 0.7085 0.4436 0.4530 0.5585 0.5461 0.2287 0.2308 0.8183 0.7418 

(100,100) 1.8 0.8 0.7154 0.4570 0.4660 0.5620 0.5521 0.2349 0.2812 0.8281 0.7632 

 

From above Table 1, it is perceived that LINEX and GE Loss functions estimate the least AUC values when 0.2 and 1.2l k  . 

Moreover, the highest AUC values are attained based on LINEX loss function when 2.1 kl . Hence the LINEX loss function 

turned out to be the ideal loss function for estimating the exponential AUC. 

IV. ILLUSTRATIVE EXAMPLE 

We availed the dataset with low birth weight (LBW) extracted from www.umass.edu, which contains 189 observations. From the data 

set the mother’s age variable treated as influential variable for making a diagnosis. Here, 59 babies are LBW and 130 are not. Table 2 

illustrates the expected exponential AUC values using LBW sample data. 

 

Table 2: LBW Data AUC values 

(I, H)=(59,130) 8.0,8.1  HD   

JS 

JL(l=k=0.2) 

JL(l=k=–0.2) 

JL(l=k=1.2) 

JL(l=k=–1.2) 

JG(l=k=0.2) 

JG(l=k=–0.2) 

JG(l=k=1.2) 

JG(l=k=–1.2) 

0.6923 

0.4501 

0.5498 

0.2310 

0.7684 

0.4595 

0.5404 

0.2743 

0.7258 

 

     From Table 2, we detect that highest AUC value is obtained under LINEX Loss function when parameters of loss function values 

are l = k = –1.2. So that, the LINEX loss function is the best estimation method for exponential AUC using LBW data set. Also, 

graphical representation is used to validate the proposed approach. Figure 1, depicts the Expected exponential AUC values using 

LBW sample data. 

 

AUCJS 

AUCJL AUCJG AUCJL AUCJG AUCJL AUCJL AUCJG AUCJG 
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Figure 1: Estimated Exponential AUC values  

    

               From the above Figure 1, it is envisaged that LINEX Loss function gives the uppermost AUC value while loss parameters 

are l = k = –1.2. 

 

V. CONCLUSION 

The principal objective of this paper is to associate the Bayesian estimate AUC values through Jeffrey’s three loss functions. Also, the 

Simulation study helps to observe and associate the performance of the AUC estimators aimed at different sample sizes through 

different loss parameter values. Moreover, we noted that LINEX loss function gives the maximum AUC values while loss parameters 

are l = k = –1.2. Hence, the Jeffery’s LINEX loss function is the best estimation method for estimating the exponential AUC values. 
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