
TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304170 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 222

Energy Efficient Low-Latency Signed

Multiplier for FPGA Based Hardware

Accelerators

Smt. Y. Bhargavi1, SD.Shahin2, Y.Deedepya3, S.Upendra4, SK.Samreen5

1Assistant Professor, 2,3,4,5Student

Electronics and Communication Engineering

N.B.K.R Institute of Science And Technology, Andhra Pradesh , India

Abstract:

In many applications, including

multimedia processing and artificial

neural networks, multiplication is one

of the most commonly used

mathematical operations. The

multiplier is one of the main causes of

energy consumption, critical path

latency and resource utilization in such

applications. In field programmable

gate array (FPGA) based designs, these

effects become even more apparent.

However, most state-of-the-art designs

are for ASIC-based systems.

Additionally, the few FPGA-based

designs in use today are primarily

limited to unsigned integers and

require additional circuitry to accept

signed operations. This paper provides

an area-optimized, low-latency and

energy-efficient architecture for an

exact signed multiplier to overcome

these limitations in FPGA-based

applications using signed integers. Our

devices reduce area, latency, and

energy by up to 40, 43.0, and 70,

respectively, compared to Vivado's

region-optimized IP factor. An open

source library containing RTL

implementations of our concepts is

available at https://cfaed.tu-

dresden.de/pd-downloads.

Keywords: Multiplier, FPGA,

Hardware Accelerators, Verilog ,Xilinx

Radix-4…..

I.I NTRODUCTION

The overall efficiency, resource usage

and power consumption of such

applications are directly affected by the

chosen multiplier architecture and its

implementation. Synthesis tools use

lookup tables instead of DSP blocks as

multipliers for these low-precision

integers. It is more useful to have a

small-area, efficient and energy-saving

LUT-based multiplier option in addition

to DSP blocks. For Xilinx FPGAs, we

presented inefficient radix-4 multiplier

implementations using Booth

technology. In their later work,

underpowered multipliers were

implemented using the multiplier

algorithms developed by Booth and

Baugh-Wooley. Such methods work

well only for modestly large bit width

coefficients; higher bit width multipliers

require more FPGA resources. Using

default Xilinx Vivado synthesis settings,

the Virtex-7 FPGA precision 88

multiplier log-based implementation

uses 71 LUTs.

II. FPGA

Field Programmable Gate Arrays

(FPGAs) are highly flexible,

reprogrammable logic devices that

leverage advanced CMOS

manufacturing technologies, similar to

other industry-leading processors and

processor peripherals.Like processors

and peripherals, FPGAs are fully user

programmable.For FPGAs, the program

is called a configuration bit stream,

which defines the FPGA's

https://cfaed.tu-dresden.de/pd-downloads

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304170 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 223

A field-programmable gate array (FPGA) is an

integrated circuit designed to be configured by the

customer or designer after manufacturing

 hence "field- programmable".

 The FPGA configuration

 is generally specified using a hardware

description language (HDL), similar to that used

for an application-specific integrated

 circuit (ASIC). FPGAs can be

 used to implement any logical function

that an ASIC could perform.

Block Diagram of FPGA

 FPGA Logic Block

The logic block contains a MUX (multiplexer), a

D-flip-flop and a LUT. LUT implements logical

combination functions; A MUX is used for the

selection logic and a D-flip-flop stores the output

of the LUT. The basic building block of an FPGA

is a lookup table-based function generator. The

number of LUT inputs varies between 3, 4, 6 and

even 8 after the experiments. We now have

adaptive LUTs that provide two outputs per LUT

with two generator implementations. The Xilinx

Virtex-7 is the most popular FPGA that includes

a look-up table (LUT) and a flip-flop connected

to a MUX. as discussed above. A current FPGA

consists of approximately hundreds or thousands

of configurable logic blocks. To configure the

FPGA, Model sim and Xilinx ISE software are

used to generate and develop bitstream files.

Block Diagram of Logic Block

III. PROPOSED APPROACH Two's

 complement coefficients are

important for many applications. In this paper, we

present a method to reduce the maximum height

of the partial product table generated by the

radix-4 Modified Booth Encoded multiplier by

one row without increasing the delay of the partial

product generation step. This reduction can

allow faster packaging of some product

 groups and standard arrangements.

 This technique is of particular

 interest for all multiplier designs,

but especially for short width two's complement

multipliers for high- performance embedded

 cores. The proposed method is general

and can be extended to encodings with a larger

radius and square and m_n rectangular

coefficients of any size. We evaluate the proposed

approach against some other possible solutions;

results based on rough theoretical analysis

and logical synthesis showed its effectiveness in

terms of both range and delay.

We provide region-optimized, low- latency, and

energy-efficient exact signed multipliers using the

principles of Booth's radix-4 multiplication

algorithm. In a multiplier based on bit encoding

(BE), the sign (MSB) of the multiplier and the

associated BE value determine the correct sign of

the partial input. The required sign extensions (SE)

are listed in Tables1(a) and 1(b) for each possible

combination of BE values and multiplier MSB.

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304170 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 224

Table 1(a) : Booth Encoding

Table 1(b): Sign Extension

Block Diagram of Proposed Approach

 Generation of Partial Products

The lut type-a configuration is used to

implement the booth's encoding (a). The

initial mux (controlled by the s signal)

determines whether an or an-1 should be

transmitted for partial product

production based on the value of be.

Lastly, depending on the value of the z

signal, the third mux can make the

partial product zero. This data is sent as

a carry propagate signal "Pout" To the

connected carry chain. The input signal

serves as the carry chain's "Gout" Signal

generator. The bm 1, bm and bm-1

(from the multiplier), a (the msb of the

multiplicand), and pin are the four inputs

to the lut type-b. On the first row of

partial products, the pin signal is fixed at

1, but for all subsequent rows, it is fixed

at 0. The lut calculates the se signal,

applies the xor operation to it, and sends

the outcome as the carry propagate

signal's "Pout" To the connected carry

chain. The pin signal directly supplies

the carry generate signal (gout). The

right sign information from one partial

product row is transferred to the next

partial product row using lut type-

c.displays the first row of partial

products for an 8x8 multiplier using luts

of types a, b, and c. The required input

carry is calculated using the rightmost

type-a lut in each partial product row.

When representing a partial product in

2's complement format, this input carry

is used. A total of four partial product

rows will be produced for an 88

multiplier.

Partial Product Generation

 Reduction in Critical Path Delay

The transmission chain of each partial

product row of the factor NxM is N 4

bits long. The transmission chain length

can be reduced to N1 bits to increase the

critical path delay of the multiplier.

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304170 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 225

Critical Path Delay Reduction

Figure shows a delay-optimized

implementation of our unique critical

path (b). Each partial input row has two

coefficient bits required for the partial

input terms pp(x, 0) and pp(x, 1). One 6-

input LUT "A1" can realize both partial

product expressions. As in the previous

example, each pp(x, 2) of the partial

output row can be realized

independently using another 6-input

LUT called "A2". A separate 6-input

LUT called "CG" can be used to

determine the correct input transfer for

each partial product line. The internal

configurations of LUT types A1, A2 and

CG are shown in Figure 4. Only the

output signals pp(x, 2) and cgout are

different for LUT types A2 and CG.

LUT type A2 uses only the pp(x, 2)

signal, while LUT type CG uses only the

cgout signal. with the factor NxM (N 3)

x (M/2) - 1 LUT is required to produce

byproducts.

 Final Summation

Binary adders, ternary adders and 4:2

compressors can be used to subtract the

generated partial inputs to calculate the

final product. A 4:2 compressor can turn

two output lines into four partial lines.

Our results show that the use of ternary

components can reduce overall resource

usage. But they are slower than binary

adders on the critical path. Thus, the

fractional yields obtained in our study

are reduced by using 4:2 compressors

and binary viewers. We implemented

them using 6-input LUTs and associated

transport circuits.

Block diagram of 4:2 compressor

IV. MODIFIED BOOTH’S

ALGORITHM FOR RADIX-4

One solution to implementing fast

multipliers is to increase parallelism,

which helps reduce the number of

subsequent computation steps. The

original version of Booth's algorithm

(Radix-2) had two shortcomings. They

are:

1) When designing parallel multipliers,

the number of operations of

addition-subtraction and operations

of transfer changes and becomes

difficult.

2) The algorithm becomes inefficient

when there is an isolated

Booth's algorithm for scanning three-bit

strings is given below:

a) If necessary, extend the sign bit by

1 position to ensure that n pairs.

b) Attach the 0 multiplier to the right

side of the LSB.

Depending on the value of each vector,

each partial product is 0, M, -M, 2M or -

2M. Negative values of B are

obtained by 2's complement, and this

article uses CLA (Carry-look-ahead)

adders. Multiplication of M is done by

shifting M to the left by one bit. Thus, in

any case, when designing an n-bit

parallel multiplier, only n/2 partial

inputs are produced.

Zn = -2xBm+1 +Bm +Bm+1

Where B is the Multiplier

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304170 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 226

Radix-4 Encoding

Example

V. PERFORMANCE EVALUATION

Comparison Graph Between Existing

And Proposed Multiplier

Performance Of Multiplier Based On
Radix’s

We Also Used Our Multiplier For The

Reasoning Phase Of The Neural

Network. Ann Inference Accuracy Is

96.67% For 10,000 Photos Using 8-Bit

Fixed-Point Numbers And An 8x8

Multiplier. Using a 64-Bit Number And

a Multiplier, The Original Accuracy Is

97.09%. The Predicted Lut Savings

Would Be 17.5% If The Network Were

Implemented On An Fpga Using The

Exact Multipliers We Proposed Instead

Of The Multiplier Optimized For The

Vivado Region. Implementation Of

Artificial Neural Network Inference In

Fpga: We Use a Neural Network To

Estimate Multiplier Performance. The

Purpose Of This Experiment Is To Find

Out If The Advantages Of Our

Multiplier Apply To Other Fpga

Architectures And The General System

Layout. The Target Fpga Is The Xilinx

Zynq Ultrascale Xczu3eg From The

Ultra96 Evaluation Platform

VI. SCHEMATIC DIAGRAMS

Block Diagram Of Radix-4 Booth

Multiplier

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304170 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 227

Simulation Result

VII. CONCLUSION

For FPGA-based systems, this study

provided a revolutionary area-optimized,

low-latency and energy-efficient signed

multiplier design. The advantages of

coefficients in neural network

applications were also assessed. RTL

models of our ideas are available as an

open source library at

https://cfaed.tudresden.de/pd-downloads.

VIII. REFERENCES

[1] Xilinx. 2018. 7 Series DSP48E1

Slice, UG479.

[2] S. Ullah, et al., “Area-optimized

low-latency approximate multipliers for

FPGA-based hardware accelerators,” in

DAC 2018.

[3] I. Kuon etal., “Measuring the gap

between FPGAs and ASICs,” in IEEE

TCADICS 2007.

[4] Xilinx. 2015. LogiCORE IP

Multiplier v12.0, PG108.

[5] A. D. Booth, “A Signed Binary

Multiplication Technique,” in the

Quarterly Journal of Mechanics and

Applied Mathematics 1951.

[6] C. R. Baugh etal., “A two’s

complement parallel array multiplication

algorithm,” in IEEE TC, vol. 100, no. 12,

1973.

[5] M. Kumm, et al., “An eff i cient

softcore multiplier architecture for

Xilinx FPGAs,” in Computer Arithmetic

(ARITH), 2015.

[6] H. Parandeh-Afshar etal.,

“Measuring and reducing the

performance gap between embedded and

soft multipliers on FPGAs,“ in FPL,

2011.

[7] Xilinx. 2016. 7 Series FPGAs Conf i

gurable Logic Block, UG474.

[8] H. Parandeh-Afshar, et al.,

“Exploiting fast carry-chains of FPGAs

for designing compressor trees,“ in FPL,

2009.

[9] A. Kakacak etal., “Fast multiplier

generator for FPGAs with LUT based

partial product generation and

column/row compression,” in Integr.

VLSI J. 2017.

[10] M. Kumm etal., “Resource Optimal

Design of Large Multipliers for FPGAs,”

in ARITH 2017.

[11] V. Mrazek etal., “Evoapprox8b:

Library of approximate adders and mul-

tipliers for circuit design and

benchmarking of approximation

methods,” in DATE 2017.

[12] Rajendra Katti, “A Modified Booth

Algorithm for High Radix Fixed point

Multiplication”, Very Large Scale

Integration (VLSI) Systems, IEEE

Transactions, vol. 2, pp.:

522-524, Dec. 1994.

https://cfaed.tudresden.de/pd-downloads

