

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304057 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 439

IMPLEMENTATION OF CNN BASED CHIROGRAPHY

DIGIT IDENTIFICATION

B.Mysura Reddy1, M.Usha Sree2 , P.Tharun Teja3

1Assistant Professor, 2,3Student

Electronics and Communication Engineering

N.B.K.R Institute of Science and Technology, Andhra Pradesh, India

Abstract: A CNNs are widely used in the computer vision

for different purposes such as image classification and target

detection, the total number of parameters and computation

of the models is gradually increasing. Therefore, the main

objective of this project is CNN processor design with an

FPGA based resource multiplexing and power consumption

of CNNs.

 In this paper we observe the variation of different

algorithms that can classify the hand – written number using

various hidden layers, different number of epochs and to

make a comparison based on the accuracy of CNN. This is

performed using the Modified National Institute of

Standards and Technology (MNIST) dataset.

Keywords: FPGA, Parallel Processing, Hidden Layers,

Epochs, MNIST dataset.

1.INTRODUCTION

In last few years, Some field Programmable gate array

(FPGA)based accelerators of the testing phase of CNNs

have been proposed. FPGAs are widely used on portable

devices. They can be programmed to achieve high

parallelism & provide good performance. The power

consumption of FPGAs is lower than that of GPUs under the

same workload. These reasons make FPGAs suitable for

implementing the testing phase of a CNN. They can

provide comparable runtime performance of testing to

GPUs and achieve lower power consumption, which is

critical in portable devices.

 In this project, FPGA based is

 implementation of the testing phase of a CNN for number

recognition is proposed. These project mainly design to focuses

on improving power efficiency & providing high performance.

 2.CONVOLUTION NEURAL NETWORK

 Convolutional neural networks are

distinguished from other neural networks by their superior

performance with image, speech, or audio signal inputs.

They have three main types of layers, which are:

 Convolutional layer

 Pooling layer

 Fully-connected layer

 The convolutional layer is the first layer of a

convolutional network. while convolutional layers can be

followed by additional convolutional layers or pooling

layers, the fully-connected layer is the final layer. With

each layer, the CNN increases in its complexity, identifying

greater portions of the image. Earlier layers focus on simple

features, such as colors and edge. As the image progresses

through the layers of the CNN, it starts to recognize larger

elements or shapes of the object until it finally identifies

the intended object.

 In figure 1, the input of the CNN is an RGB

image. The image is convolved by a filter, which also has

three channels. Each channel of the image is convolved by

the corresponding channel of the filter. The convolution

results of all three channels are summed up to produce a

new image, this image is called a feature map since it

contains some features of the original image. Then the size

of this feature map is reduced to 4 × 4. The values of the

new feature map are used as the input of the fully

connected layer. The following sub-sections describe each

CNN layer

in detail.

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304057 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 440

 Figure 1: CNN with three layers

2.1: DESIGN OF CNN

 The testing phase of the CNN needs to be

deployed in the FPGA, the CNN architecture is designed

to meet the accuracy of CNN prediction while keeping the

amount of data and computation as small as possible. The

CNN design of this system has the following features:

 Minimized number of filters per convolutional

layer and fully connected layers without

degrading classification performance, and use of

small convolutional kernels of 3 × 3;

 Bias parameters are not used. Since the

parameters need to be converted from floating

point to fixed point into the FPGA for processing,

the bias parameters are not used to avoid the

accumulation of errors in the fixed point

parameterization, thus reducing the impact on

recognition accuracy;

 Using maximum pooling, Global Avg Pooling is

replaced with Global Max Pooling; it is easier to

implement maximum pooling operations in

hardware compared to average pooling;

 Use the simple activation function ReLU, as other

activations, including division, power and other

functions, are difficult to implement in hardware;

 Minimized number of heterogeneous layers to

allow FPGAs to implement resource reuse and

parallel-processing techniques for large amounts

of data.

 The CNN of this system is built using Python based

on Tensor flow and Keras frameworks, mainly consisting

of six convolutional layers, seven activation layers, three

pooling layers and one fully connected layer. The CNN

removes a large number of fully connected

Figure 2: Convolutional neural network model

layers and bias terms, and the convolutional layers use all

3 × 3 convolutional kernels. The total number of

parameters of the optimized CNN is reduced from 25,000

to about 4676, and the accuracy of the convolutional

neural network reaches 97.3 percent on the MNIST

dataset, as shown in Figure 2.

Among them, the total number of inputs, outputs,

convolutional kernel sizes and parameters for each layer

of the CNN model is shown in Table 1. To maximize the

resource multiplexing architecture of the FPGA

hardware resources, the convolutional kernel sizes of the

convolutional layers are all 3 ×3, and the fully connected

layer uses a small convolutional kernel of 1 × 1

 Table 1. Statistics of each parameter in the model

 3.Hardware implementation of CNN on FPGA

The hardware part mainly consists of a Xilinx’s A7 series

XC7A35T chip as the main control chip, DDR3 chip as

the cache buffer unit, OV5642 camera as the video image

real time acquisition module, and LCD display as the

graph display module and prediction result display

module. The overall block diagram of the system is

shown as follows in Figure 3: first, the camera acquires

image data, and the FPGA stitches the input image data

into 16bit and outputs it to the frame cache controller;

then, the image data is stored in the two addresses of

DDR3 sequentially using a ping-pong operation, and the

frame cache controller reads out the image data from

DDR3 through AXI bus; finally, one way of the image

data is displayed on the monitor in real time; the other

way of the image data is sent to the image pre-processing

module, and the processed 28 × 28 image is input to the

convolutional neural network module for predictive

classification, and the successful recognition result is

displayed on the right side of the LCD in real time.

Figure 3. Overall block diagram of the system.

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304057 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 441

4.FPGA IMPLEMENTATION

4.1 IMAGE PRE PROCESSING AND RESIZING

 After acquiring the image, thresholding is

applied and then converted into a binary image. The image

is then dilated to reduce the artifacts caused by noise and

then connected component labelling is applied to extract

the characters from the image. The extracted images are

cropped from the source image and then resized into a

24×24 image and then padded into a 28×28 image.

Histogram normalization is also applied to help against

illumination intensity variations.

 Figure 4: Image Segmentation and Pre processing

4.2: CONVOLUTIONAL LAYER

To maximize the resource reuse architecture, the

convolutional layers designed in this system are all 3 × 3

convolutional kernels, which avoids the design of

corresponding structures for convolutional kernels of

different sizes and makes the designed computational

modules universal. In view of the fact that the same layer

architecture will occupy a lot of extra hardware

resources, this system adopts a resource reuse

architecture to reuse the same convolutional layer unit,

which greatly reduces the consumption of hardware

resources. The structure diagram before and after

resource multiplexing is shown in Figure 5.

Figure 5: Structure diagram before and after

resource multiplexing

In the hardware implementation, for the Zero Padding

layer, this system is implemented by the edge detection

method, which reduces the clock cycles and the

consumption of storage resources for this layer. For the

activation layer, except for the last layer, which is a Soft

max function, the ReLU activation function is used, which

not only saves hardware resources, but also effectively

removes negative points and is easy to implement in

hardware.

4.3: POOLING LAYER

A convolutional layer is usually followed by a pooling

layer that reduces the spatial dimension of feature maps.

 Figure 6: Max pooling and average pooling

A pooling layer works similarly to a convolution layer.

The difference is that convolution kernels are replaced by

pooling kernels. Max Pooling and Average Pooling are

two commonly used pooling algorithms.

4.4: FULLY CONNECTED LAYER

Pooling layers help to solve these problems. The output of

a convolutional layer will be different even if only one

pixel of the input changes. Let us assume that a CNN

consists of only convolutional layers and fully connected

layers. If there are many images that are only slightly

different from each other in the training set, the network

will have a very high chance of overfitting since the

network has to take all pixels into consideration. With a

pooling layer, the resolution of the image is reduced, which

means that some trivial features are removed. Those

images that have little difference from each other may end

up generating the same feature map. Therefore, the network

is able to tolerate small differences bet ween images

without suffering from overfitting.

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304057 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 442

 Figure 7 : Fully connected layer

 5:TRANING THE NETWORK

Once a network has been structured for a particular

application, that network is ready to be trained. To start

this process the initial weights are chosen randomly.

 Then, the training, or learning, begins. In

supervised training, both the inputs and the outputs are

provided. The network then processes the inputs and

compares its resulting outputs against the desired outputs.

Errors are then propagated back through the system,

causing the system to adjust the weights which control the

network. This process occurs over and over as the weights

are continually tweaked. The set of data which enables the

training is called the "training set." During the training of

a network the same set of data is processed many times as

the connection weights are ever refined.

Figure 8: Training result of CNN for MNIST

Hyper Parameters used for training the network are:

 Learning rate: 0.001

 Mini Batch Size: 1

 L2 Regularization strength: 0.001

 Momentum: 0.9

 Table 2: Training results of the network

 6.RESULT

This paper propose an FPGA-based resource multiplexing

– architecture convolutional neural network processor

design, which aims to reduce the consumption by CNN.

The system takes handwritten number recognition CNN as

an example to design a convolutional neural network

processor with a resource multiplexing architecture.

Finally, the prediction accuracy of the processor is 97.25

percent.

7.CONCLUSION

An image detection hardware architecture based on

convolutional neural network algorithm. The convolution

operation is designed by a pipeline scheme. The system

processes 8 convolution kernels in parallel to speed up the

processing of the image detection system. Through

simulation, each module and the entire system can work

normally. The use of hardware parallel processing features

and the use of pipelined processing data in the

implementation of the FPGA increases system throughput

and speeds up the system.

8.REFERENCES

[1]Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,

Bingjun Xiao, and Jason Cong. “Optimizing FPGA-based

accelerator design for deep convolutional neural

networks”. In: Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays. ACM. 2015, pp. 161– 170.

[2]Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim,

Jeremy Fowers, Karin Strauss, and Eric S Chung.

“Accelerating deep convolutional neural networks using

specialized hardware”. In: Microsoft Research

Whitepaper 2.11 (2015), pp. 1–4.

[3]Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun

Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen

Song, et al. “Going deeper with embedded FPGA platform

for convolutional neural network”. In: Proceedings of the

2016 ACM/SIGDA International Symposium on Field

Programmable Gate Arrays. ACM. 2016, pp. 26–35.

[4]Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash

Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and

Yu Cao. “Throughput-optimized OpenCL-based FPGA

accelerator for large-scale convolutional neural

networks”. In: Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays. ACM. 2016, pp. 16–25.

TIJER || ISSN 2349-9249 || © April 2023 Volume 10, Issue 4 || www.tijer.org

TIJER2304057 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 443

[5]Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei

Xing, Jeng-Hau Lin, Mani Srivastava, Rajesh Gupta, and

Zhiru Zhang. “Accelerating binarized convolutional

neural networks with software-programmable FPGAs”.

In: Proceedings of the 2017 ACM/SIGDA International

Symposium on Field Programmable Gate Arrays. ACM.

2017, pp. 15–24.

[6]Yongmei Zhou and Jingfei Jiang, "An FPGA-based

accelerator implementation for deep convolutional neural

networks," 2015 4th International Conference on

Computer Science and Network Technology (ICCSNT),

Harbin, 2015, pp. 829-832.

[7]C. Morales Morales, U. Flores, M. Adam Medina, M.

Diaz Salazar, J. Abiel Caballero, D. Criado Cruz and S.

Pavoni Oliver, "Digital Artificial Neural Network

Implementation on a FPGA for data classification", IEEE

Latin America Transactions, vol. 13, no. 10, pp. 3216-3

