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Abstract: A CNNs are widely used in the computer vision 

for different purposes such as image classification and target 

detection, the total number of parameters and computation 

of the models is gradually increasing. Therefore, the main 

objective of this project is CNN processor design with an 

FPGA based resource multiplexing and power consumption 

of CNNs. 

 

             In this paper we observe the variation of different 

algorithms that can classify the hand – written number using 

various hidden layers, different number of epochs and to 

make a comparison based on the accuracy of CNN. This is 

performed using the Modified National Institute of 

Standards and Technology (MNIST) dataset. 

Keywords: FPGA, Parallel Processing, Hidden Layers, 

Epochs, MNIST dataset. 

 

 
1.INTRODUCTION 

In last few years, Some field Programmable gate array 

(FPGA)based accelerators of the testing phase of CNNs 

have been proposed. FPGAs are widely used on portable 

devices. They can be programmed to achieve high 

parallelism & provide good performance. The power 

consumption of FPGAs is lower than that of GPUs under the 

same workload. These reasons make FPGAs suitable for 

implementing the testing phase of a CNN. They can 

provide comparable runtime performance of testing to 

GPUs and achieve lower power consumption, which is 

critical in portable devices. 

 

                        In this project, FPGA based is  

 implementation of the testing phase of a  CNN      for  number 

recognition is proposed. These project mainly design to focuses 

on improving power efficiency & providing high performance. 

 

 

 

 

 

 

  2.CONVOLUTION NEURAL NETWORK 

 

                     Convolutional neural networks are 

distinguished from other neural networks by their superior 

performance with image, speech, or audio signal inputs. 

They have three main types of layers, which are: 

 

 Convolutional layer 

 Pooling layer 

 Fully-connected layer 

 

              The convolutional layer is the first layer of a 

convolutional network. while convolutional layers can be 

followed by additional convolutional layers or pooling 

layers, the fully-connected layer is the final layer. With 

each layer, the CNN increases in its complexity, identifying 

greater portions of the image. Earlier layers focus on simple 

features, such as colors and edge. As the image progresses 

through the layers of the CNN, it starts to recognize larger 

elements or shapes of the object until it finally identifies 

the intended object. 

 

                In figure 1, the input of the CNN is an RGB 

image. The image is convolved by a filter, which also has 

three channels. Each channel of the image is convolved by 

the corresponding channel of the filter. The convolution 

results of all three channels are summed up to produce a 

new image, this image is called a feature map since it 

contains some features of the original image. Then the size 

of this feature map is reduced to 4 × 4. The values of the 

new feature map are used as the input of the fully 

connected layer. The following sub-sections describe each 

CNN layer 

in detail. 
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            Figure 1: CNN with three layers 

 

2.1: DESIGN OF CNN 

             The testing phase of the CNN needs to be 

deployed in the FPGA, the CNN architecture is designed 

to meet the accuracy of CNN prediction while keeping the 

amount of data and computation as small as possible. The 

CNN design of this system has the following features: 

 

 Minimized number of filters per convolutional 

layer and fully connected layers without 

degrading classification performance, and use of 

small convolutional kernels of 3 × 3; 

  Bias parameters are not used. Since the 

parameters need to be converted from floating 

point to fixed point into the FPGA for processing, 

the bias parameters are not used to avoid the 

accumulation of errors in the fixed point 

parameterization, thus reducing the impact on 

recognition accuracy;  

 Using maximum pooling, Global Avg Pooling is 

replaced with Global Max Pooling; it is easier to 

implement maximum pooling operations in 

hardware compared to average pooling; 

 Use the simple activation function ReLU, as other 

activations, including division, power and other 

functions, are difficult to implement in hardware;  

 Minimized number of heterogeneous layers to 

allow FPGAs to implement resource reuse and 

parallel-processing techniques for large amounts 

of data. 

 

           The CNN of this system is built using Python based 

on Tensor flow and Keras frameworks, mainly consisting 

of six convolutional layers, seven activation layers, three 

pooling layers and one fully connected layer. The CNN 

removes a large number of fully connected  

   

 

Figure 2: Convolutional neural network model 

 

layers and bias terms, and the convolutional layers use all 

3 × 3 convolutional kernels. The total number of 

parameters of the optimized CNN is reduced from 25,000 

to about 4676, and the accuracy of the convolutional 

neural network reaches 97.3 percent on the MNIST 

dataset, as shown in Figure 2. 

 

Among them, the total number of inputs,   outputs, 

convolutional kernel sizes and parameters for each layer 

of the CNN model is shown in Table 1. To maximize the 

resource multiplexing architecture of the FPGA 

hardware resources, the convolutional kernel sizes of the 

convolutional layers are all 3 ×3, and the fully connected 

layer uses a small convolutional kernel of 1 × 1 

  Table 1. Statistics of each parameter in the model 

 

  3.Hardware implementation of CNN on FPGA 

 

The hardware part mainly consists of a Xilinx’s A7 series 

XC7A35T chip as the main control chip, DDR3 chip as 

the cache buffer unit, OV5642 camera as the video image 

real time acquisition module, and LCD display as the 

graph display module and prediction result display 

module. The overall block diagram of the system is 

shown as follows in Figure 3: first, the camera acquires 

image data, and the FPGA stitches the input image data 

into 16bit and outputs it to the frame cache controller; 

then, the image data is stored in the two addresses of 

DDR3 sequentially using a ping-pong operation, and the 

frame cache controller reads out the image data from 

DDR3 through AXI bus; finally, one way of the image 

data is displayed on the monitor in real time; the other 

way of the image data is sent to the image pre-processing 

module, and the processed 28 × 28 image is input to the 

convolutional neural network module for predictive 

classification, and the successful recognition result is 

displayed on the right side of the LCD in real time. 

 

 

Figure 3. Overall block diagram of the system. 
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4.FPGA IMPLEMENTATION 

4.1 IMAGE PRE PROCESSING AND RESIZING     

   

                 After acquiring the image, thresholding is 

applied and then converted into a binary image. The image 

is then dilated to reduce the artifacts caused by noise and 

then connected component labelling is applied to extract 

the characters from the image. The extracted images are 

cropped from the source image and then resized into a 

24×24 image and then padded into a 28×28 image. 

Histogram normalization is also applied to help against 

illumination intensity variations. 

 

 
 

 Figure 4: Image Segmentation and Pre processing 

 

4.2: CONVOLUTIONAL LAYER 

 

To maximize the resource reuse architecture, the 

convolutional layers designed in this system are all 3 × 3 

convolutional kernels, which avoids the design of 

corresponding structures for convolutional kernels of  

different sizes and makes the designed computational  

modules universal. In view of the fact that the same layer 

architecture will occupy a lot of extra hardware 

resources, this system adopts a resource reuse 

architecture to reuse the same convolutional layer unit, 

which greatly reduces the consumption of hardware 

resources. The structure diagram before and after 

resource multiplexing is shown in Figure 5. 

 

 

Figure 5: Structure diagram before and after 

resource multiplexing 

 

In the hardware implementation, for the Zero Padding 

layer, this system is implemented by the edge detection 

method, which reduces the clock cycles and the 

consumption of storage resources for this layer. For the 

activation layer, except for the last layer, which is a Soft 

max function, the ReLU activation function is used, which 

not only saves hardware resources, but also effectively 

removes negative points and is easy to implement in 

hardware. 

            

4.3: POOLING LAYER 

A convolutional layer is usually followed by a pooling 

layer that reduces the spatial dimension of feature maps.  

 

        Figure 6: Max pooling and average pooling 

A pooling layer works similarly to a convolution layer. 

The difference is that convolution kernels are replaced by 

pooling kernels. Max Pooling and Average Pooling are 

two commonly used pooling algorithms. 

4.4: FULLY CONNECTED LAYER 

Pooling layers help to solve these problems. The output of 

a convolutional layer will be different even if only one 

pixel of the input changes. Let us assume that a CNN 

consists of only convolutional layers and fully connected 

layers. If there are many images that are only slightly 

different from each other in the training set, the network 

will have a very high chance of overfitting since the 

network has to take all pixels into consideration. With a 

pooling layer, the resolution of the image is reduced, which 

means that some trivial features are removed. Those 

images that have little difference from each other may end 

up generating the same feature map. Therefore, the network 

is able to tolerate small differences bet ween images 

without suffering from overfitting. 
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          Figure 7 : Fully connected layer 

        

        5:TRANING THE NETWORK 

Once a network has been structured for a particular 

application, that network is ready to be trained. To start 

this process the initial weights are chosen randomly. 

            Then, the training, or learning, begins. In 

supervised training, both the inputs and the outputs are 

provided. The network then processes the inputs and 

compares its resulting outputs against the desired outputs. 

Errors are then propagated back through the system, 

causing the system to adjust the weights which control the 

network. This process occurs over and over as the weights 

are continually tweaked. The set of data which enables the 

training is called the "training set." During the training of 

a network the same set of data is processed many times as 

the connection weights are ever refined. 

 

Figure 8: Training result of CNN for MNIST 

 

Hyper Parameters used for training the network are: 

 Learning rate: 0.001 

 Mini Batch Size: 1 

 L2 Regularization strength: 0.001 

 Momentum: 0.9 

 

 

     Table 2: Training results of the network 

                                  

  6.RESULT 

 

This paper propose an FPGA-based resource multiplexing 

– architecture convolutional neural network processor 

design, which aims to reduce the consumption by CNN. 

The system takes handwritten number recognition CNN as 

an example to design a convolutional neural network 

processor with a resource multiplexing architecture. 

Finally, the prediction accuracy of the processor is 97.25 

percent.  

 

7.CONCLUSION 

 

An image detection hardware architecture based on 

convolutional neural network algorithm. The convolution 

operation is designed by a pipeline scheme. The system 

processes 8 convolution kernels in parallel to speed up the 

processing of the image detection system. Through 

simulation, each module and the entire system can work 

normally. The use of hardware parallel processing features 

and the use of pipelined processing data in the 

implementation of the FPGA increases system throughput 

and speeds up the system. 
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