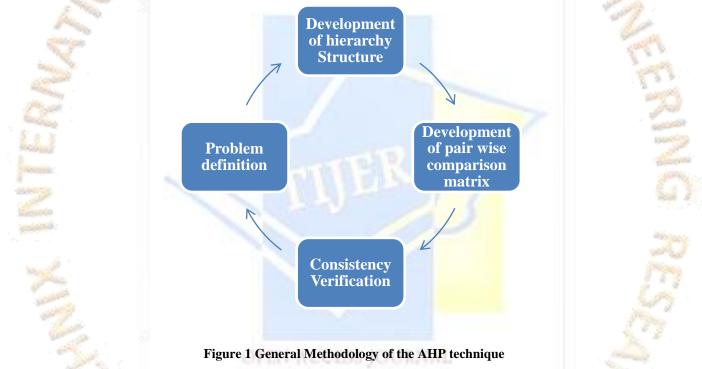
TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org

Decision making using Analytical hierarchy process in Ambika river basin

1st Rathod Nandita, 2nd Gargi Rajpara

¹ Post graduate student,² Assistant professor
¹Civil Engineering Department ,
¹ L.D.R.P institute of technology, Gandhinagar, Gujrat-India


Abstract - The multi-criteria programming made through the use of the analytic hierarchy process is a technique for decision making in complex environments in which many variables or criteria are considered in the prioritization and selection of alternatives or projects.

Index Terms – Analytical hierarchy process, Multi criteria decision making (MCDA)

1. INTRODUCTION

AHP was developed in the 1970s by Thomas L. Saaty and has since been extensively studied, and is currently used in decision making for complex scenarios. The application of AHP begins with a problem being decomposed into a hierarchy of criteria so as to be more easily analyzed and compared in an independent manner (Exhibit 2). After this logical hierarchy is constructed, the decision makers can systematically assess the alternatives by making pair-wise comparisons for each of the chosen criteria. This comparison may use concrete data from the alternatives or human judgments as a way to input subjacent information (Saaty, 2008).

2. STEP TO CONDUCT AHP

Step 1: Problem definition

For the flood hazard assessment seven parameters are used in the ArcGis. Aim of the modifying the weights is to give the best and effective weights based on the study area which may improve the accuracy.

Step 2: Development of hierarchy Structure

Many factors effect on the flood hazard assessment, which is shown in Figure. After developing the hierarchy structure questionnaire responses are analyses using the table 1 Saaty's scale

The Comparison Scale (SAATY scale)

The comparison between two elements using AHP can be done in different ways, the relative importance scale between two alternatives as suggested by Saaty (SAATY, 2005) is the most widely used. Attributing values that vary from 1 to 9, the scale determines the relative importance of an alternative when compared with another alternative, as we can see in Table 1.

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org Table 1 Saaty's Scale of Relative Importance (Saaty, 2005)

Scale	Numerical rating	reciprocal
Extremely preferred	9	1/9
Very strong to extremely	8	1/8
Very strongly preferred	7	1/7
Strongly to very strongly	6	1/6
Strongly preferred	5	1/5
Moderately to strongly	4	1/4
Moderately preferred	3	1/3
Equally to moderately	2	1/2
Equally preferred		1

Step 3: Development of pair wise comparison matrix

18

Development of pair wise comparison matrix is very important step of the AHP technique. A pair wise comparison matrix of size $n \times n$ is constructed. For each level of the hierarchy, the pair-wise comparison generates a matrix of relative rankings. The number of matrices needed, depends on the number of elements at each level. The arithmetic means of all 50 responses in the form of pair wise comparisons are calculated and compiled into a single matrix, which is described in Table 2 and Table 3 includes the calculation procedure for the pair wise comparison matrix.

10000									
1	Slope Elevation Rainfall		Soil	Distance from River	Drainage Density	Land use Land cover			
Slope	1.00	3.784160998	3.9340023	1.093 <mark>6054</mark>	2.967891156	2.914829932	1.163356009		
Elevation	0.26	1.00	2.9799546	1.1586848	1.2571 <mark>42857</mark>	2.496054422	0.820589569		
Rainfall	0.25	0.34	1.00	2.1495798	1.110929705	1.953197279	0.886621315		
Soil	0.91	0.86	0.47	1.00	1.21563 <mark>9832</mark>	<mark>1.4</mark> 01451247	1.038367347		
Distance from River	0.34	0.80	0.90	0.82	1.00	2.566984127	1.016716553		
Drainage Density	0.34	0.40	0.51	0.71	0.39	1.00	1.196190476		
Landuse Landcover	0.86	1.22	1.13	0.96	0.98	0.84	1.00		

OPEN ACCESS JOURNAL

	Slope	Elevation	Rainfall	Soil	Distance from River	Drainage Density	Land use Land cover
Slope	1.00	3.784160998	3.9340023	1.0936054	2.967891156	2.914829932	1.163356009
Elevation	0.26	1.00	2.9799546	1.1586848	1.257142857	2.496054422	0.820589569
Rainfall	0.25	0.34	1.00	2.1495798	1.110929705	1.953197279	0.886621315
Soil	0.91	0.86	0.47	1.00	1.215639832	1.401451247	1.038367347
Distance from River	0.34	0.80	0.90	0.82	1.00	2.566984127	1.016716553
Drainage Density	0.34	0.40	0.51	0.71	0.39	1.00	1.196190476
Landuse Landcover	0.86	1.22	1.13	0.96	0.98	0.84	1.00
Sum	3.97	8.40	10.92	7.90	8.92	13.17	7.12

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org Table 3 Sum of respective parameter in the columns

Table 4 Relative normalized matrix

2	Slope	Elevation	Rainfall	Soil	Distance from River	Drainage Density	Land use Land cover
		<					8
Slope	0.2517	0.4506	0.3603	0.1384	0.3325	0.2213	0.1634
andre Antonio							
Elevation	0.0665	0.1191	0.2729	0.1466	0.1409	0.1895	0.1152
1 -							0
Rainfall	0.0640	0.0400	0.0916	0.2721	0.1245	0.1483	0.1245
Come and the second	<u>5</u> 2				5175		<u></u>
Soil	0.2302	0.1028	0.0426	0.1266	0.1362	0.1064	0.1458
Distance from	1						20
River	0.0848	0.0947	0.0824	0.1041	0.1120	0.1949	0.1428
Drainage Density	0.0864	0.0477	0.0469	0.0903	0.0436	0.0759	0.1680
Landuse Landcover	0.2164	0.1451	0.1033	0.1219	0.1102	0.0635	0.1404

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org Table 5 Finding out criterion weights

	Slope	Elevation	Rainfall	Soil	Distance from River	Drainage Density	Land use Land cover	Criteria weights
Slope	0.2517	0.4506	0.3603	0.1384	0.3325	0.2213	0.1634	0.2740
Elevation	0.0665	0.1191	0.2729	0.1466	0.1409	0.1895	0.1152	0.1501
Rainfall	0.0640	0.0400	0.0916	0.2721	0.1245	0.1483	0.1245	0.1236
Soil	0.2302	0.1028	0.0426	0.1266	0.1362	0.1064	0.1458	0.1272
Distance from River	0.0848	0.0947	0.0824	0.1041	0.1120	0.1949	0.1428	0.1165
Drainage Density	0.0864	0.0477	0.0469	0.0903	0.0436	0.0759	0.1680	0.0798
Land use Land cover	0.2164	0.1451	0.1033	0.1219	0.1102	0.0635	0.1404	0.1287

Step 4: Consistency Verification

Some degree of inconsistency may emerge due to personal or subjective judgments. For the performance checking consistency is a main step. It suggests that given weights are applicable or not. Consistency is determined by the consistency ratio (CR). For a given order of the matrix, the Consistency Ratio (CR) is the ratio of the Consistency Index (CI) to the Randomness Index (RI). Table 6 and 7 includes the general calculation steps for the consistency checking.

After calculating the values of table 7, weighted sum is found out using the example shown below and it is included in table 8. Weighted sum value is the sum of all column values in respective rows.

For slope,

0.274 + 0.568 + 0.486 + 0.139 + 0.345 + 0.232 + 0.149 = 2.193

Similar Calculation for all the parameters.

	Slope	Elevation	Rainfall	Soil	Distance from River	Drainage Density	Land use Land cover	Weighted sum value
Slope	0.27404 357	0.568053 796	0.48606 77	0.13913 25	0.345902 423	0.232694 671	0.1497055	2.195600135
Elevation	0.07125 133	0.150113 538	0.36818 98	0.14741 22	0.146517 759	0.199263 277	0.1055968 86	1.188344759
Rainfall	0.06851 089	0.051038 603	0.12355 55	0.27347 75	0.129476 877	0.155926 284	0.1140941 26	0.916079784
Soil	0.24937 965	0.129097 643	0.05807 11	0.12722 37	0.141680 655	0.111879 679	0.1336214	0.950953849
Distance from River	0.09317 481	0.120090 83	0.1112	0.10432 34	0.116548 217	0.204925 688	0.1308353 23	0.881098262
Drainage Density	0.09317 481	0.060045 415	0.06301	0.09032 88	0.045453 805	0.079831 303	0.1539307 76	0.585778247
Landuse Landcover	0.23567 747	0.183138 516	0.13961 77	0.12213 48	0.114217 253	0.067058 295	0.1286841 68	0.990528174

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org **Table 6 Weight Sum value**

Ratio is found out from the weighted sum value and the criteria weights in respective rows which is mentioned in table 4.

Table 7 Ratio Calculation

	slope	elevation	rainfall	soil	Distanc e from Main River	Drainage Density	LULC	WEIGHT ED SUM VALUE(1)	CRITER IA WEIGH TS (2)	RATIO (1/2)
Slope	0.2740 4357	0.5680537 96	0.4860 677	0.139 1325	0.34590 2423	0.232694 671	0.1497 055	2.19560013 5	0.2740	8.01186 5
Elevation	0.0712 5133	0.1501135 38	0.3681 898	0.147 4122	0.14651 7759	0.199263 277	0.1055 96886	1.18834475 9	0.1501	7.91630 6
Rainfall	0.0685 1089	0.0510386 03	0.1235 555	0.273 4775	0.12947 6877	0.155926 284	0.1140 94126	0.91607978 4	0.1236	7.41431 8
Soil	0.2493 7965	0.1290976 43	0.0580 711	0.127 2237	0.14168 0655	0.111879 679	0.1336 21438	0.95095384 9	0.1272	7.47466
Distance from main River	0.0931 7481	0.1200908 3	0.1112	0.104 3234	0.11654 8217	0.204925 688	0.1308 35323	0.88109826	0.1165	7.55994 6
Drainage Density	0.0931 7481	0.0600454 15	0.0630 133	0.090 3288	0.04545 3805	0.079831 303	0.1539 30776	0.58577824 7	0.0798	7.33770
LULC	0.2356 7747	0.1831385 16	0.1396 177	0.122 1348	0.11421 7253	0.067058 295	0.1286 84168	0.99052817 4	0.1287	7.69735 9

After calculating the ratio computation of eigen value λmax is find out. Now, to Calculate. λmax , $\lambda max = \frac{8.012 + 7.916 + 7.413 + 7.475 + 7.560 + 7.337 + 7.697}{=} = 7.630$

Step 4(a): Consistency Index Calculation

Consistency Index is finding out using the values of the λmax and the size of the matrix.

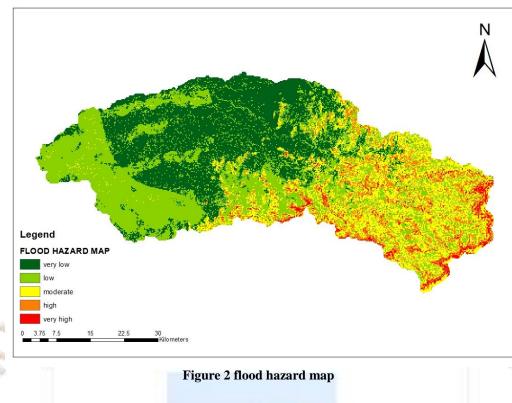
Consistency Index (CI) = $\frac{\lambda \max - n}{n}$ n-1

Here $\lambda max = 7.630$, n= number of criteria=7 So, CI=0.105

Step 4(b): Consistency Ratio Calculation

Consistency Ratio (CR) = $\frac{\text{Consistency index}}{\text{Randomness Index}}$ (RI)

RI values calculated from the table 11 of Random consistency value which is given by the Saaty 1980.


From the equation CR = 0.105 / 1.35 = 0.0777 < 0.10

From the AHP methodology Consistency Ratio < 0.10 so no need to change the weights or the weights are appropriate for the study. After completing all the methodology steps of the AHP weights of the all parameters mentioned in the table 11.

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org

3. Result

Put all weights in flood hazard map and creating final flood hazard map of Ambika river.

4. Conclusion

The study is focused on the gis technique and explain the importance of this technology. From the above study we have to find different parameter weights of our study area and creating flood hazard map using ArcMap 10.8 software.

5. References

- 1. Jia, J., Wang, X., Hersi, N. A., Zhao, W., & Liu, Y. (2019). Flood-risk zoning based on analytic hierarchy process and fuzzy variable set theory. *Natural Hazards Review*, 20(3), 04019006.
- 2. Radwan, F., Alazba, A. A., & Mossad, A. (2019). Flood risk assessment and mapping using AHP in arid and semiarid regions. *Acta Geophysica*, 67(1), 215-229.ss
- 3. Anwat, V. K., Hire, P. S., Pawar, U. V., & Gunjal, R. P. (2021). Analysis of Magnitude and Frequency of Floods in the Damanganga Basin: Western India.
- 4. Lad, A., Shah, J. (2021). Flood Hazard Mapping and 1 D Hydraulic Module for Damanganga River, Valsad district, Gujarat, India.

