
TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org

TIJER2303045 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 385

Literature survey on design and verification of axi4

slave devices
Harish T L

MARSTERS OF TECHNOLOGY

SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

Abstract: An essential part of a system on a chip (SoC) is not just the components or blocks that it contains, but also

how these components and blocks are connected to one another. Advanced Microcontroller Bus Architecture (AMBA)

is a system that enables the individual blocks to interact with one another. These protocols have established the de

facto standard for 32-bit embedded processors because they are widely documented and may be used without the

payment of royalties. High-performance and high-frequency system designs may be designed with the aid of the AMBA

AXI 4 protocol. It's ideal for systems that need both large bandwidth and low latency since it enables high-frequency

operation without the use of complicated bridges. In addition to being compatible with older versions of the AHB and

APB interfaces, it also allows for a wide range of possible configurations for the network's interconnects. Without the

need for a bridge, many peripherals may be connected into AMBA-based CPUs via the use of this slave interface. By

constructing a wrapper over the AXI4 slave interface, the newly created slave interface may also be used to link non-

AMBA-based CPUs to a variety of peripherals. These peripherals include SPI, I2C, and UART, amongst others.

Keywords— Advanced Microcontroller Bus Architecture (AMBA), Advanced Peripheral Bus (APB), AMBA High

performance Bus (AHB), Advanced Extensible Interface (AXI).

I. Introduction

The firm ARM (Advanced RISC Machines) is responsible

for the development of the AMBA, of which the

Advanced Extensible Interface (AXI) is a component. It is

a communication protocol that takes place on the chip

itself. By providing support for the design of high-

performance and high-frequency system designs, the

AMBA AXI protocol benefits the field. If your system

requires both large bandwidth and low latency, the AXI

protocol is a good choice. It allows for high-frequency

functioning without the need for a complex bridge. It is

compatible with the interface specifications of a diverse

selection of elements. The AXI protocol offers a degree

of flexibility in the manner in which interconnect designs

are implemented. It maintains compatibility with the

already-established AHB and APB interfaces. A distinct

address/control phase and data phase are two of the

most important aspects of the AXI protocol. Moreover,

the AXI protocol provides support for unaligned data

transfers by making use of byte strobes. It processes

transactions in bursts, and the sole valid address is the

first address that is issued. Direct Memory Access is

achieved at a reduced cost thanks to its read and write

data channels that are kept independent (DMA). It

allows for the issuance of many unique addresses

simultaneously. It allows for the completion of

transactions in a non-ordered manner. It simplifies and

streamlines the process of adding register stages to

allow for timing closure.

2. Literature Survey

The AMBA, is a standard for managing the

communication between different parts of a system-on-

a-chip. This specification is an open standard that is

implemented as an on-chip interface. As a result, it

simplifies the expansion of multi-processor systems with

many controllers and exteriors. AMBA's purview,

despite the fact that it was originally intended for use

with microcontrollers, has expanded significantly since

the organization's foundation. The application

processors utilised in today's smartphones and other

portable electronic devices are only one example of the

many ASIC and SoC components that make use of the

Advanced Message-Passing Architecture (AMBA). In

1996, ARM introduced AMBA to the public for the first

time. The Advanced System Bus (ASB) and the Advanced

Peripheral Bus (APB) were the first two AMBA buses

created [1&2]. The AMBA High-performance Bus (AHB)

is a single clock-edge protocol introduced with ARM's

second version of AMBA, known as AMBA 2 [3-5]. The

AMBA 3 was launched by ARM in 2003. It included AXI

for enhanced performance connection and the

Advanced Tracing Bus (ATB) [6&7]. AMBA 3 was the third

iteration of the Advanced Micro Devices Architecture

(AMBA). In 2010, the AMBA 4 standards were first made

available, beginning with AMBA 4 AXI4. To alleviate

traffic, AMBA 4 ACE was released in 2011 with system-

wide coherency extension and a rethought high-speed

transport layer [8-10]. Metric-driven verification of

protocol compliance is made feasible by the AMBA

protocol family, allowing for comprehensive testing of

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org

TIJER2303045 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 386

interface IP blocks and SoC designs. In comparison to its

predecessor, the AMBA advanced extensible interface 4

(AXI4) has the following enhancements: Information on

component compatibility, burst lengths up to 256 beats,

improved write response requirements, and the

removal of locked transactions are just a few of AXI4's

new features. AMBA AXI4 is a protocol system that

allows interfacing between 16 masters and 16 slaves.

Verilog-HDL is used to create an actualization of the

design [11-13].

Connecting and managing functional blocks in system-

on-a-chip (SoC) designs is the focus of the Advanced

Microcontroller Bus Architecture (AMBA). This

specification is an open standard that is implemented as

an on-chip interface. Hence, it facilitates the creation of

multi-processor systems that use several controllers and

peripherals. AMBA's purview, despite the fact that it was

originally intended for use with microcontrollers, has

expanded significantly since the organization's

foundation. The application processors utilised in

today's smartphones and other portable electronic

devices are only one example of the many ASIC and SoC

components that make use of the Advanced Message-

Passing Architecture (AMBA). In 1996, ARM introduced

AMBA to the public for the first time. The first two AMBA

buses to be developed were the Advanced System Bus

(ASB) and the Advanced Peripheral Bus (APB) [1&2]. The

AMBA High-performance Bus (AHB) is a single clock-

edge protocol that debuted in ARM's second edition of

AMBA, dubbed AMBA 2. [3-5] The Advanced eXtensible

Interconnect (AXI) and the Advanced Tracing Bus (ATB)

are components of ARM's CoreSight on-chip debug and

trace solution, which was unveiled in 2003 [6&7]. The

most recent release of the AMBA is version 3. In 2010,

the AMBA 4 standards were first made available,

beginning with AMBA 4 AXI4. The following year, in

2011, AMBA 4 ACE was released, which extended system

wide coherency and included a redesigned high-speed

transport layer in addition to features meant to alleviate

congestion [8-10]. The Advanced Microcontroller Bus

Architecture (AMBA) protocol family offers metric-

driven protocol compliance verification, which enables

thorough testing of interface IP blocks and system-on-

chip (SoC) designs. The AMBA advanced extensible

interface 4 (AXI4) adds many improvements over its

predecessor, the AMBA AXI3: New features in AXI4

include support for burst durations up to 256 beats,

revised write response requirements, and the

elimination of locked transactions. Interfacing between

16 masters and 16 slaves is supported by the AMBA AXI4

protocol system. Verilog-HDL is used to create an

actualization of the design [11-13].

The AMBA AXI protocol was developed with the

intention of being used in high-frequency system

designs. It's well-suited for usage as a super-fast

submicron link due to a number of features. A function

that is capable of supporting up to 256 data transfers in

a single data burst has been suggested for inclusion in

this project [3]. A total of 16 masters and 16 slaves are

connected via the AMBA AXI4 system. In this society,

each master and slave is assigned a unique four-bit

number. A master, a slave, and a connecting bus make

up the system[4]. Among other mechanisms, the

following ones are supported by the AXI4 protocol:

• There are two different varieties of address mode:

aligned and unaligned.

•There are three different kinds of bursts: fixed,

incremental, and wrap.

• A selection of sixteen different burst lengths, with

values ranging from 1 to 256.

•Four distinct forms of responses available, including

OKAY, EXOKAY, SLVERR, and DECERR.

Figure 1 System Methodology

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org

TIJER2303045 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 387

Every transmission in the AXI protocol is completed via a

process called the hand shake. When it comes to

transferring control and data information, every channel

employs the same VALID/READY handshake. The master

and the slave may both adjust the data and control

information transfer rates using this bidirectional flow

control system. The VALID signal is sent by the source

when either the data or the control information may be

accessed. If the destination is all set to receive the data

or control information, it will send out a READY signal.

The VALID and READY signals must both be high in order

for the transfer operation to take place. No

combinatorial paths should exist between the input

signals and the output signals at either the master or the

slave interface.

2.1.1 Address Write Channel (AW Channel) Only when

ARESETn is HIGH does AXI MASTER drive the write

command signals; in all other circumstances, it drives all

signals as zero. The AXI MASTER is responsible for driving

the following address write command signals: To validate

the driving signals, set AWVALID to HIGH and use AWID,

AWADDR, AWBURST, AWLEN, AWSIZE, AWCACHE,

AWLOCK, and AWPROT. The AWPROT signal is a

safeguard. AXI MASTER will not set AWVALID to LOW

until it has received the AWREADY signal from the

DESTINATION SLAVE, which indicates that it has received

the address write instruction signals. This is because it

has received the address write instruction signals, as

shown by the AWREADY signal. When AWREADY is set to

LOW, AXI MASTER's settings will not change.

2.1.2 Write Data Channel (W Channel) After providing

the write address instruction signals, the AXI MASTER is

the one responsible for driving these Write Data signals.

Only when ARESETn is HIGH does it cause these signals

to be driven; otherwise, it causes all signals to be driven

to zero. The WDATA signal is driven by the AXI MASTER

with the WVALID bit set to HIGH, and it maintains the

same value until it receives the WREADY signal. When

WREADY is HIGH, it causes the subsequent WDATA to be

driven. The data for the AWLEN No. is driven by the AXI

MASTER. During the process of driving the most recent

data, it sets the WLAST to the HIGH position.

2.1.3 Write Response Channel (B Channel) Only when

ARESETn is HIGH does the DESTINATION SLAVE cause

these Write Response signals to be driven; in all other

cases, it causes all signals to be driven as zero.

DESTINATION SLAVE is now holding out for the WLAST

signal. It maintains a HIGH value of BVALID and drives the

response signals in response to the WLAST signal.

Awaiting the BREADY signal from the AXI MASTER, it will

remain at its current value. Each signal will be reset to

zero on the next positive edge of ACLK if BREADY is HIGH,

but it will retain its current value if it is not HIGH.

2.1.4 Address Read Channel (AR Channel) To be clear,

AXI MASTER simply controls the signalling for commands.

When ARESETn is HIGH, AXI MASTER controls the drive

of the command signals; in all other circumstances, it

drives all signals as zero. The AXI MASTER is responsible

for driving the following address read command signals:

The driven signals are valid when ARVALID is HIGH, which

affects ARID, ARADDR, ARBURST, ARLEN, ARSIZE,

ARCACHE, ARLOCK, and ARPROT. AXI MASTER will drive

the ARVALID signal as LOW in response to address read

instruction signals from SOURCE SLAVE. Given that it has

received the address read instruction signals as shown by

the ARREADY signal, this is the case. In the event that

ARREADY is LOW, the settings of AXI MASTER will remain

unchanged.

2.1.5 Read Data Channel (R Channel) After receiving the

read command signals, the SOURCE SLAVE is responsible

for driving these Read Data signals. ARESETn only drives

these signals when it is HIGH ; otherwise, it drives all of

the signals with a value of zero. When the RDATA signal

is driven by SOURCE SLAVE with RVALID set to HIGH, it

maintains its previous value until it gets the RREADY

signal. In the event that RREADY is HIGH, the succeeding

RDATA value will be determined by that state. The data's

ARLEN Value is determined by its SOURCE SLAVE. It

drives the final data and puts the RLAST in the HIGH

position.

Verification Environment of AXI Protocol System Verilog

is used in the development of the AXI bus's verification

environment. Figure 8 provides a visual representation of

this verification environment. The hierarchical layering of

this environment facilitates both its continued upkeep

and its re-use with other designs now undergoing

verification.

TIJER || ISSN 2349-9249 || © March 2023 Volume 10, Issue 3 || www.tijer.org

TIJER2303045 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 388

Figure 2 The Testbench Architecture

Conclusion:

An example of a plug-and-play IP standard is the AMBA

AXI4 protocol. ARM supplies this resource, which

includes a bus specification and a technology-agnostic

approach for creating and testing customised high-

integrity embedded interfaces. To read or write data

from or to a certain address point on a slave, it is

assumed that the master will provide the necessary data.

This article argues that an effective verification

environment can perform simulations of the vast

majority of conceivable AXI signal scenarios, analyse all

of the data that is supplied automatically, and complete

coverage analysis all while the simulation is operating. In

order for the environment to enhance the coverage and

significantly cut down the amount of time spent on

verification. When it comes to the amount of burst and

beats information that may be communicated, the AMBA

AXI has certain restrictions. The data for the burst must

stop short of the 4k barrier. The INCR burst type is the

only one that supports bursts that are longer than

sixteen beats. A limit of 16 beats per burst is still enforced

for both the WRAP and FIXED kinds. These are the

challenges that need to be conquered in order to use the

AMBA AXI system.

References

[1] “AMBA Peripheral Bus Controller Data Sheet”

Copyright © 1996 Advanced RISC Machines Ltd (ARM).

[2] Ramagundam, S.; Dept. of Computer Sci., Troy Univ.,

Montgomery, AL, USA ; Das, S.R. ; Morton, S. ; Biswas,

S.N. , “Design and implementation of high-performance

master/slave memory controller with microcontroller

bus architecture”, Instrumentation and Measurement

Technology Conference (I2MTC) Proceedings, 2014 IEEE

International, 12-15 May 2014.

[3] “AMBA™ Specification (Rev 2.0)” 13th May 1999-A,

First release, Copyright ARM Limited 1999.

[4] “Soo-Yun Hwang; Dept. of Comput. Eng., ChungNam

Nat. Univ., Taejon, South Korea; Kyoung-Sun Jhang “An

improved implementation method of AHB Bus Matrix”,

SOC Conference, 2005. Proceedings. IEEE International,

25-28 Sept. 2005

[5] Hu Yueli; Key Lab. of Adv. Display & Syst. Application.,

Shanghai Univ., Shanghai, China ; Yang Ben “Building an

AMBA AHB Compliant Memory Controller”, Measuring

Technology and Mechatronics Automation (ICMTMA),

2011 Third International Conference, 6-7 Jan. 2011.

 [6] “AMBA AXI Specification (AR500-DA-10008)” 16

June, 2003-A, First release, Copyright ARM Limited 2003

[7] Paunikar, A.; Sch. of Electron. Eng., VIT Univ., Vellore,

India ; Gavankar, R.; Umarikar, N. ; Sivasankaran, K. ,

“Design and implementation of area efficient, low power

AMBA 3-APB Bridge for SoC” , Green Computing

Communication and Electrical Engineering (ICGCCEE),

2014 International Conference, 6-8 March 2014

[8] “AMBA AXI 4 and ACE Protocol Specification” 28

October 2011 D Non-Confidential First release of AMBA

AXI 4 and ACE Protocol Specification.

[9] Xu Yang ; Harbin Inst. of Technol., Harbin ; Zhang

Qing-li ; Fu Fang-fa ; Yu Ming-yan, “NISAR: An AXI

compliant on-chip NI architecture offering transaction

reordering processing” ASIC, 2007. ASICON '07. 7th

International Conference, 22-25 Oct. 2007. [10] Manjula,

R.B. ; Manvi, S.S. ; Kaunds, P. “Data transactions on

system-on-chip bus using AXI4 protocol” Recent

Advancements in Electrical, Electronics and Control

Engineering (ICONRAEeCE), 2011 International

Conference, 15-17 Dec. 2011. [11] “Verilog-A Language

Reference Manual Analog Extensions to Verilog HDL”,

Version 1.0, Open Verilog International August 1, 1996

[12] “Verilog-AMS Language Reference Manual”, Release

2.3.1, Accellera Systems Initiative , 06-2009 [13] “Verilog-

AMS Language Reference Manual”. Release 2.4,

Accellera Systems Initiativ, 06-2014.

