
TIJER || ISSN 2349-9249 || © December 2022, Volume 9, Issue 12 || www.tijer.org

TIJER2212013 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 83

DEVELOPMENT OF VIP FOR ADVANCED

EXTENSIBLE INTERFACE (AXI 4) IN OPEN-

POWER PROCESSOR BASED FABLESS SoC

Paseddula Kama Raju B.C. Vengamuni M Tech

M Tech Student Assistant Professor (Adhoc)

Department of ECE Department of ECE

JNTUACEA, Anantapur JNTUACEA, Anantapur

Andhra Pradesh, India Andhra Pradesh, India.

ABSTRACT

Objective: Because of the recent trend of IP-based designs in

System on Chip (SoC) development, testing the System on Chip

is required (SoC). The Verification Intellectual Property (VIP) is

particularly useful in this circumstance. Many SoC projects are

adopting this trend of IP Core-based design flow and VIP-based

verification flow to reduce time to market and speed up the SoC

verification process. The primary goal of this effort is to create a

Verification Intellectual Property (VIP) for the Advanced

extensible Interface (AXI)-4.0 Protocol, a member of the

Advanced Micro controller Bus Architecture family (AMBA).

Method: The most recent methodology, known as the Universal

Verification Methodology UVM, is used to construct the VIP.

Findings. All five of AXI's channels are successfully tested for

functionality. Multiple Burst based, out of order, outstanding

transaction completion scenarios are also verified with the help of

Questa sim tool.

Keywords

 AXI, Functional Coverage, Out of Order Transaction, SoC, VIP,

AMBA, IP, Multiple Outstanding Transaction,

1. INTRODUCTION
 In current years, because of the miniaturization of semiconductor
procedure era and computing to continue to exist in cutting-edge
marketplace conditions, regular customization is required.

Semiconductor procedure era has been evolving at a quicker price

given that 1971. Semiconductor procedure era became 10m, in

2010 the era fell to 32nm, and the destiny is shiny with 7nm. The

Advanced Microcontroller Bus Architecture (AMBA)

specification defines an on-chip communique modern for the

layout of excessive widely wide-spread normal overall

performance 32-bit and 16-bit embedded microcontrollers. It has

turn out to be delivered thru way of manner of ARM Ltd in 1996

and is appreciably used as bus-to-chip verbal exchange in System

on chip (SoC) designs. AMBA is a registered trademark of ARM

Ltd. The first AMBA buses had been Advanced System Bus

(ASB) and Advanced Peripheral Bus (APB). In its second release,

AMBA-2, ARM delivered AMBA High widely wide-spread

normal overall performance Bus (AHB) it's miles a single top

clock protocol. In 2003, ARM delivered the third era, AMBA 3,

which incorporates the Advanced Extensible Interface (AXI 3) for

issue-to-issue connectivity. Later in 2010, ARM delivered the

fourth era of AMBA 4, consists of a complex model Advanced

extensible Interface (AXI 4) benefit even higher interconnections.

The goal of the verification is to reveal the purposeful definition

of a project. In the lifestyles of a business integrated circuit,

validation consumes approximately 70% of the signing effort. The

significance of verification may be calculated in phrases of the

charges of layout mistakes which may be high. The current

plus, the whole lot else spent withinside the schematic of the

brand-new frames and included circuits is presently spent on

validation with the excellent of the multifaceted body and

exponentially increasing port numbers, the architects are dealing

with the maximum complicated take a look at withinside the

subject matter shape for approval. New improvements and take a

look at plans inclusive of bodily blending and configuration reuse

growing ever wider limits simplify the problem. Specialists are

pressured to apply the great to be had approval and configuration

gadgets to shorten the period of the verification process. The first

manner to brief and secure body manage entails each the tool and

the development of the procedure, however it is a lethal blend to

anticipate that having basically the great gear will convey circuits

included and excellent frames that meet marketplace needs and

growth the goal weight.

 2.VIP
As reusable, pre-designed logic blocks of IP-based designs are

used in complicated designs, so too must the verification. A

reusable verification model that can be introduced into the test

bench and used to validate a design is known as a Verification

Intellectual Property (VIP). Using a VIP will speed up the

verification process, cut down on how long it takes to run the

initial test case, and shorten the time it takes to launch the product.

A pre-defined functional block known as a VIP can be

characterized as a configurable component that can be modified

by the user and is simple to integrate into various verification

environments. VIP’s will have the necessary elements for the

generation of test bench and protocol checking mechanism. In

proposed method, verification of all the memory transactions in

AXI protocol for all the five channels i.e., read address and read

data write address, write data, write response channels are done.

In this work, the total test bench environment was modeled by

using System Verilog and development of verification to the slave

block in AXI is done by using UVM.

 Fig: Proposed AXI VIP

TIJER || ISSN 2349-9249 || © December 2022, Volume 9, Issue 12 || www.tijer.org

TIJER2212013 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 84

3. Universal Verification Methodology

3.1 The Verification Components in UVM
Base classes and infrastructure tools make up the UVM library.

The base classes present in the UVM hierarchy can be broadly

divided into two groups: data and the component class hierarchy,

which is descended from UVM components, is meant to simulate

the testbench's permanent structures, such as monitors and drivers.

The purpose of the data classes created from UVM sequence item

is to model transactions and stimuli.

Design Under Test

The specifications of the design are what need to be verified. In

terms of the designing language, this is basically the RTL

description. The design's attributes and purposes are explained.

Sequencer

The entity on which the sequences will run is a sequencer.

Sequence of transactions must be used in order to assess DUT

behavior. When the driver requests it, the sequencer executes the

stimulus creation code and passes the sequence items down to the

driver.

Driver

The DUT signals are driven by the driver. It receives the

sequencer's sequence elements and displays them on the interface.

It is the environment's active component.

Monitor

The monitoring device is the verification environment's passive

component. It gathers data as a packet, scans the incoming DUT

signals on the interface, and then sends the packet to the coverage

collector and scoreboard for coverage data.

Agent

Agent is an abstract container with a monitor, a sequencer, and a

driver. It operates in two different ways: passively and actively.

In active mode, it drives the signal to the DUT, and in passive

mode, it scans the signals coming from the DUT.

Scoreboard

It is a verification component that compares the DUT response to

the expected response in order to verify that it matches the

expected response. It provides information on the proportion of

times the response was accurate and incorrect.

Environment

The building is put together by it. Depending on the needs of the

design, it incorporates one or more agents, a scoreboard, and other

measurement and checking components.

Test

It has the highest position in the component hierarchy. UVM tests

use the classes that are derived from a test class. The test class

makes it possible to determine the dynamic behavior of the

processes using sequences during the creation of the testbench and

verification components.

Sequence items

These are the essential data elements that are transferred between

the verification components at an abstract level.

Sequences

To create a true set of inputs, these are gathered from objects in

the sequence. The transactions produced by sequences can be

randomly generated or predetermined.

3.2 The Class Library Hierarchy in UVM
The environment has been fully configured and is ready to start

run phase There are various run stages, which are utilized to

execute simulations. As this phase takes more time, it is the only

one that employs tasks to specify. All UVM sequences and

components derive from the base class UVM object. All UVM

components extend the UVM component class, which is derived

from this class. The UVM transaction class extends sequence item

and sequence, which are subclasses of the transaction class, which

is derived from the UVM object class.

 3.2.1 UVM Phases:

All of the components in the verification environment will be

called in the following order during the predefine phases of UVM

simulation.

Build phase: By instantiating the necessary components, it

creates the environment's fundamental structure.

Connect phase: It is used in the child component to connect ports

to exports, exports to ports, and ports to ports.

End of elaboration phase: It means the verification environment

has been meticulously created and tweaked.

Start of simulation phase: It implies that verification was done

on the DUT.

Extract phase: It is used to gather information from various

locations inside the verification environment. It retrieves and

extracts all of the data from the scoreboard.

Check phase: Any unexpected condition in a verification

environment is verified.

Report phase: It provides a report of the specific test that was

carried out.

Final phase: It provides information on the phases' completion

and the possibility of ending the simulation.

4. Proposed Work
The environment (ENV) in System Verilog is not reusable for

many test scenarios. Because different test scenarios necessitate

different types of transactions. As a result, packet generation must

be done independently of the environment (ENV). System Verilog

does not support reusability or portability. In System Verilog,

changing objects at the top level is not possible. There is no

configuration facility for test bench infrastructure in System

Verilog. For standard communication, System Verilog employs

mail boxes. However, only the System Verilog language can

recognize mailboxes. No other language understands mailbox.

These are the disadvantages of System Verilog. All of these

disadvantages can be overcome by employing the most modern

approach, referred to as the Universal Verification Methodology

(UVM). Methodology is a collection of best practices developed

by verification experts through which a standard framework for

the verification environment can be built. UVM has a collection

of base class libraries. (For example, uvm_component,

uvm_object, and so on.) To achieve interoperability, UVM has a

standard communication mechanism. (For example, TLM ports.)

The testbench in UVM can be configured from the top level. (For

example, factory, configuration methods, and so on.)

Configuration methods aid in the creation of a reusable testbench.

UVM enables us to generate scenarios that are independent of the

testbench environment. (For example, sequence, sequence_items,

and so on.) We can achieve reusability in plug and play, which is

used for on-chip communication, using UVM. AXI specifies

higher performance as well as existing bus architectures. AXI is

the most popular bus architecture in today's complex SoCs and

FPGAs.

AXI protocol is appropriate for the following applications:

 For applications that require high frequency operation

but do not necessitate the use of complicated bridges.

 for applications that have a wide range of components

whose interface requirements they must satisfy for

memory devices with a long initial access time.

 The AXI is used as a bus to interconnect the functional

blocks inside a SoC

 Backward compatibility with existing APB and AHB

components.

 To connect the functional blocks inside a SoC, the AXI

is employed as a bus.

 The special features of AXI-4 are as follows: -

 It uses five channels to spread its address, control and

data phases separately.

 It supports sending unaligned data transfers via byte

strobes.

 By issuing only the starting address, it employs burst-

based transactions.

 It allows for the creation of multiple outstanding

addresses.

 The completion of out-of-order transactions is

supported.

 It has separate data channels for reading and writing.

TIJER || ISSN 2349-9249 || © December 2022, Volume 9, Issue 12 || www.tijer.org

TIJER2212013 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 85

 Fig: Read and Write channels architecture

One that starts transfers and is capable of making decisions is

referred to be a master device. A device that cannot make

decisions and is obligated to carry out the master's orders is a

slave. Five channels make up the AXI protocol, and they all

function separately. Since the channels are independent of one

another, there is no reliance. To enable quick data transport, the

AXI protocol was created. These are the explanations behind it.

i.e.,

(a) The write data channel can be used for a write transaction, and

the read data channel can be used for a read transaction

simultaneously. This enables separate and concurrent execution of

write and read operations. AXI offers quicker data transfer speeds

as a result, and this is one of the reasons behind this.

(b) The issue of numerous outstanding transactions is supported

by the AXI-4 protocol. In other words, the master is allowed to

start a new transaction before the previous one is finished. In this

way, the master can start 'N' transactions, and each of these

transactions that the master starts can be saved in a pipeline. As a

result, the bus is more effective and data transfer speed increases.

In light of this, memory systems with high initial access latencies

are the ones for which AXI is most appropriate. By doing this, a

slave with a slow initial access latency is prevented from

obstructing the channel. This will enhance the bus’s functionality,

 Fig: Several outstanding addresses Example of a transaction

 Fig: completion of Out of Order Transactions case.

(c) The AXI-4 protocol will also support Out_Of_Order(000)

transaction completion in the read data and write response

channels only. Data is always sent in the write data channel of

AXI-4 in the order of the addressed slaves. Consider the first slave

in the read data channel as being busy and unable to send data

right away. The second slave, however, is prepared to send data.

The second slave does not have to wait for the first slave to

complete its duty as a result. The second slave can transfer data

ahead of the first slave as a result. The first slave can transfer data

once it is prepared. Therefore, speedier slaves can reply ahead of

slower slaves. Transaction latency is drastically reduced.

Similar to this, quicker slaves can respond to the master via the

write response channel first, completing that particular

transaction. Any format of reply is capable of being sent by Slave.

Depending on the situation, the slave might or might not answer

in the same sequence as the master did. The bus's efficiency and

speed are both enhanced by this. The Interconnect will make sure

that the response is returned to the appropriate Master, whichever

Master initiated the transaction by matching with the AWID

displayed in the Figure waveforms.

In AXI, the Master device simply gives the initial address of the

burst transaction; it is up to the slave to determine the succeeding

addresses depending on the burst length and size of each transfer

in the burst, which is started by the Master. The master will also

assign an AWID to the address along with it. These AWIDs are

used to identify the slaves that receive data and to return responses

to the correct master. The VALID signal is turned HIGH when the

master gives a legitimate address. The slave recognizes the master

by changing the READY signal to HIGH when it is ready to take

the signals delivered by it. Until the slave accepts the address as

well as other control information by asserting the READY signal

to HIGH, the master must hold onto signals like AWSIZE,

AWBURST, AWLEN, and so forth. One channel contains

multiple signals together. The master will send control signals

such as AWBURST, AWSIZE, AWLEN, and others across the

write address channel in addition to the burst's starting write

address. The write data channel will be used by the master to

communicate write data to the slave. Through the write response

channel, the slave will acknowledge the master. The write

response channel will be used by the slave to acknowledge the

master. For the duration of the burst operation, only one response

is transmitted to the master, and it is also sent via a different

channel. In AXI, a transaction is deemed to be finished after the

slave has responded to the master with a response regarding the

transmitted data. Through the read address channel, the master

will communicate the address and a few control signals, such as

ARSIZE, ARBURST, ARLEN, and so on, to the slave. Based on

the control information from the master, the slave will determine

the subsequent addresses. The read data channel will now be used

by Slave to transmit read data to Master. The slave must recognize

each piece of read data. As a result, the slave can send read data

and acknowledgment through the read data channel, which is a

single channel. A read response channel is not necessary for AXI

as a result. To make the design generator in the slave easier to use,

the address is allotted to each slave in 4KB increments. Bursts are

only allowed to be 4KB in size. Early burst termination is not the

WLAST signal, whereas the last transfer in a read burst is shown

by the RLAST signal. The WSTRB signal identifies which byte

lanes in a write burst have valid data. For every eight bits of write

data, there is one write strobe bit. The maximum amount of data

bytes that can be transferred in each beat of transfer inside a burst

is indicated by the burst size. An incrementing burst's initial

transfer can be out of alignment, but all future transfers in the burst

must be. For the burst's wrapping type, every transfer in the burst

needs to be aligned. The fixed type of burst requires that each

transfer use the same byte lane and that the address remain

consistent during the burst. Aligned and unaligned transfers may

also be issued using AXI. Only 2,4,8,16 bursts should be used for

wrapping bursts. When the data size is less than 32 bits, a narrow

transfer occurs.

The VIP was developed in this work without any Design Under

Test (DUT). So, this VIP has one Slave agent and one Master

agent, and both are ACTIVE agents, that means they have all of

the monitor, driver, and sequencer. Each and every transaction

initiated by the Master agent is assumed to be going to the other

slave. The number of configured slaves can be from the test case

by overwriting the required number of slaves value into the

configuration class's "Number_of _slaves" parameter. In this case,

the master agent behaves same as the master DUT, and the slave

agent behaves same as the slave DUT. After the VIP is ready, it

will operate according to the AXI-4 protocol. If a Master

component (Master DUT) is provided, it must have a slave agent

to communicate. Set the slave agent to only be ACTIVE while the

master agent is set to PASSIVE in the VIP. It is only necessary to

monitor the driven signals because the master DUT will drive the

data. If a slave component is provided, make the slave agent in

VIP a PASSIVE agent while keeping the master agent only as

ACTIVE. If the master and slave both components are provided,

we ensure to make both the slave and master agents as PASSIVE.

We need to monitor these signals and check in the scoreboard.

TIJER || ISSN 2349-9249 || © December 2022, Volume 9, Issue 12 || www.tijer.org

TIJER2212013 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 86

5. Assertion Based Verification (ABV)

Assertions are used to validate the behavior of a design. Assertions

document knowledge about how a design should work. Assertions

are statements about properties that should be true. They also

provide information about a design's functional coverage.

Assertions are primarily used for protocol and functional testing.

Assertions improve a design's observability and controllability.

Assertions help with debugging. If there are no assertions and we

find some kind of wrong behavior at design output, it is difficult to

debug and figure out where the problem is However, if assertions

are embedded to capture all of the design rules, that failure can be

debugged much faster because the bug is caught right at the line of

code. Assertions will detect bugs at the point where they occur. As

a result, the verification process can be sped up with the help of

assertions. As a result, the verification process can be completed in

less time. The type of stimulus used influences assertions. This VIP

examines assertions for dependencies between channel handshake

signals.

6. Test Cases
All five channels are tested and verified in this paper. Basic Read

and Write scenarios for all possible burst size and burst types.

UVM also successfully validates Out of Order transaction

completion and outstanding addresses transaction cases.

7. Results
 The Master will issue four different AWADDR, AWLEN,

AWSIZE, and AWBURST commands. WDATA and WSTRB are

driven in response to the inputs provided by Master. The WLAST

signal is driven high for one clock cycle after driving the last data

of each burst to indicate the end of the burst. In Figure 6, the

master will provide four distinct AWADDR, AWLEN, AWSIZE,

and AWBURST values. Whichever burst completes the

transaction first will respond to Master first by BID. BID will

match with AWID to indicate that the response was returned to

the proper master. The read channel architecture is depicted in

Figure. ARADDR, ARLEN, ARSIZE, and ARBURST will be

given by the master. Slave to Master drives RDATA and response

based on these inputs.

Figure . Waveforms which explain Read, write

 channel architecture.

UVM Report

MASTER Transaction report

SLAVE Transaction report

8. Conclusion & future scope
 This work developed, simulated and verified of AXI-4 which

utilized A2O processor based fabless SoC in SV and UVM using

Questasim. Using AXI4, this suggested design could enhance data

transfer efficiency. In Xilinx Vivado, the design is developed and

interfaced with A20, while Mentor Questa is used for simulation.

9. References

1. Mahesh G, Sakthivel SM. Functional Verification of the

Axi2Ocp Bridge using System Verilog and effective bus

utilization calculation for AMBA AXI 3.0 Protocol. IEEE

Sponsored 2nd International Conference on Innovations in

Information, Embedded and Communication Systems

(ICIIECS). 2015.

2. Naidu KJ, Srikanth M. Design and Verification of Slave

block in Ethernet Management Interface using UVM. Indian

Journal of Science and Technology. 2016 Feb; 9(5):1-7.

3. AMBA AXI-4 Specification, Copyright ARM Limited.

http://www.gstitt.ece.ufl.edu/courses/eel4720_5721/labs/

refs/AXI4_specification.pdf.

4. Sebastian R, Mary SR, Gayathri M, Thomas A. Assertion

Based Verification of SGMII IP Core incorporating AXI

Transaction Verification Model. International Conference

TIJER || ISSN 2349-9249 || © December 2022, Volume 9, Issue 12 || www.tijer.org

TIJER2212013 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 87

on Control, Communication and Computing India (ICCC).

2015; p. 585-88.

5. Chen X, Xia Z and Wang XA. Development of Verification

Environment for AXI Bus Using System Verilog.

International Journal of Electronics and Electrical

Engineering. 2013; 2(1):112-14.

6. Chen CH, Iu JC, Huang II. A Synthesizable AXI Protocol

Checker for SoC Integration. IEEE Trans, ISOCC. 2010;

8:103-6.

7. Ranga A, Venkatesh LH, Venkanna V. Design and

Implementation of AMBA-AXI Protocol Using VHDL for

SOC Integration. International Journal of Engineering

Research and General Science. 2012; 2(4):1-5.

