
TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 1

IMPLIMENTATION OF WEIGHTED ROUND

ROBIN LOAD BALANCING ALGORITHEM

FOR GRPC

DR.CH. V. PHANI KRISHNA

 Professor

Department of CSE

phanik16@gmail.com

Teegala Krishna Reddy Engineering

College, Hyderabad

A. LAVANYA

Department of CSE

Anumula.lavanya1936@gmail.com

Teegala Krishna Reddy Engineering

College, Hyderabad

AKASH DOOSA

R. RANJITH KUMAR

Department of CSE

ranjithnnani1299@gmail.com

Teegala Krishna Reddy Engineering

College, Hyderabad

P. RAHULL

Department of CSE

p.rahull1706@gmail.com

Teegala Krishna Reddy Engineering

College, Hyderabad

Abstract:
GRPC is a modern open-source high performance Remote Procedure Call (RPC) framework that can run in

any environment. It can efficiently connect services in and across data canters with pluggable support for

load balancing, tracing, health checking and authentication. It is also applicable in last mile of distributed

computing to connect devices, mobile applications and browsers to backend services. A load balancer is a

device that acts as a reverse proxy and distributes network or application traffic across a number of servers.

Load balancers are used to increase capacity (concurrent users) and reliability of applications. They improve

the overall performance of applications by decreasing the burden on servers associated with managing and

maintaining application and network sessions, as well as by performing application-specific tasks. In this

project we intend to develop a simple load balancer based on java that works efficiently with GRPC using

weighted round robin algorithm.

I. INTRODUCTION

GRPC is a modern open-source high performance Remote Procedure Call (RPC) framework that can run

in any environment. It can efficiently connect services in and across data centers with pluggable support

for load balancing, tracing, health checking and authentication. It is also applicable in last mile of distributed

computing to connect devices, mobile applications and browsers to backend services. A load balancer is a

device that acts as a reverse proxy and distributes network or application traffic across a number of servers.

Load balancers are used to increase capacity (concurrent users) and reliability of applications. They improve

the overall performance of applications by decreasing the burden on servers associated with managing and

maintaining application and network sessions, as well as by performing application-specific tasks. In this

project we intend to develop a simple load balancer based on java that works efficiently with GRPC using

weighted round robin algorithm.

A load balancer is a device that acts as a reverse proxy and distributes network or application traffic across

a number of servers. Load balancers are used to increase capacity (concurrent users) and reliability of

applications. They improve the overall performance of applications by decreasing the burden on servers

associated with managing and maintaining application and network sessions, as well as by performing

application-specific tasks.

mailto:phanik16@gmail.com
mailto:Anumula.lavanya1936@gmail.com
mailto:ranjithnnani1299@gmail.com
mailto:p.rahull1706@gmail.com

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 2

Load balancers are generally grouped into two categories: Layer 4 and Layer 7. Layer 4 load balancers act

upon data found in network and transport layer protocols (IP, TCP, FTP, UDP). Layer 7 load balancers

distribute requests based upon data found in application layer protocols such as HTTP.

Requests are received by both types of load balancers and they are distributed to a particular server

based on a configured algorithm. Some industry standard algorithms are:

 Round robin

 Weighted round robin

 Least connections

 Least response time

Layer 7 load balancers can further distribute requests based on application specific data such as

HTTP headers, cookies, or data within the application message itself, such as the value of a specific

parameter.

Load balancers ensure reliability and availability by monitoring the "health" of applications and only

sending requests to servers and applications that can respond in a timely manner.

II Literature survey:

Java is a set of computer software and specifications developed by James Gosling at Sun Microsystems,

which was later acquired by the Oracle Corporation, that provides a system for developing application

software and deploying it in a cross-platform computing environment. Java is used in a wide variety of

computing platforms from embedded devices and mobile phones to enterprise servers and supercomputers.

Java applets, which are less common than standalone Java applications, were commonly run in secure,

sandboxed environments to provide many features of native applications through being embedded in HTML

pages.

Writing in the Java programming language is the primary way to produce code that will be deployed as byte

code in a Java virtual machine (JVM); byte code compilers are also available for other languages, including

Ada, JavaScript, Python, and Ruby. In addition, several languages have been designed to run natively on

the JVM, including Clojure, Groovy, and Scala. Java syntax borrows heavily from C and C++, but object-

oriented features are modeled after Smalltalk and Objective-C. Java eschews certain low-level constructs

such as pointers and has a very simple memory model where objects are allocated on the heap (while some

implementations e.g., all currently supported by Oracle, may use escape analysis optimization to allocate

on the stack instead) and all variables of object types are references. Memory management is handled

through integrated automatic garbage collection performed by the JVM.

On November 13, 2006, Sun Microsystems made the bulk of its implementation of Java available under the

GNU General Public License (GPL).

The latest version is Java 18, released in March 2022 while Java 17, the latest long-term support (LTS),

was released in September 2021. As an open-source platform, Java has many distributors, including

Amazon, IBM, Azul Systems, and Adopt OpenJDK. Distributions include Amazon Cornetto, Zulu, Adopt

OpenJDK, and Liberia. Regarding Oracle, it distributes Java 8, and also makes available e.g., Java 11, both

also currently supported LTS versions. Oracle (and others) "highly recommend that you uninstall older

versions of Java" than Java 8, because of serious risks due to unresolved security issues. Since Java 9 is no

longer supported, Oracle advises its users to "immediately transition" to a supported version. Oracle

released the last free-for-commercial-use public update for the legacy Java 8 LTS in January 2019, and will

continue to support Java 8 with public updates for personal use indefinitely. Oracle extended support for

Java 6 ended in December 2018.

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 3

Remote procedure calls

Remote Procedure Call is a software communication protocol that one program can use to request a

service from a program located in another computer on a network without having to understand the

network's details. RPC is used to call other processes on the remote systems like a local system. A procedure

call is also sometimes known as a function call or a subroutine call.

RPC uses the client-server model. The requesting program is a client, and the service-providing

program is the server. Like a local procedure call, an RPC is a synchronous operation requiring the requesting

program to be suspended until the results of the remote procedure are returned. However, the use of

lightweight processes or threads that share the same address space enables multiple RPCs to be performed

concurrently.

The interface definition language (IDL) -- the specification language used to describe a software

component's application programming interface (API) -- is commonly used in Remote Procedure Call

software. In this case, IDL provides a bridge between the machines at either end of the link that may be

using different operating systems (OSes) and computer languages.

When program statements that use the RPC framework are compiled into an executable program, a

stub is included in the compiled code that acts as the representative of the remote procedure code. When

the program is run and the procedure call is issued, the stub receives the request and forwards it to a client

runtime program in the local computer. The first time the client stub is invoked, it contacts a name server

to determine the transport address where the server resides.

The client runtime program has the knowledge of how to address the remote computer and server

application and sends the message across the network that requests the remote procedure. Similarly, the

server includes a runtime program and stub that interface with the remote procedure itself. Response-

request protocols are returned the same way.

When a remote procedure call is invoked, the calling environment is suspended, the procedure

parameters are transferred across the network to the environment where the procedure is to execute, and

the procedure is then executed in that environment.

When the procedure finishes, the results are transferred back to the calling environment, where

execution resumes as if returning from a regular procedure call.

During an RPC, the following steps take place:

 The client calls the client stub. The call is a local procedure call with parameters pushed onto

the stack in the normal way.

 The client stub packs the procedure parameters into a message and makes a system call to

send the message. The packing of the procedure parameters is called marshalling.

 The client's local OS sends the message from the client machine to the remote server

machine.

 The server OS passes the incoming packets to the server stub.

 The server stub unpacks the parameters -- called unmarshalling -- from the message.

When the server procedure is finished, it returns to the server stub, which marshals the return values

into a message. The server stub then hands the message to the transport layer.

The transport layer sends the resulting message back to the client transport layer, which hands the

message back to the client stub.

The client stub unmarshalls the return parameters, and execution returns to the caller.

Types of RPC

There are several RPC models and distributed computing implementations. A popular model and

implementation is the Open Software Foundation's (OSF) Distributed Computing Environment (DCE). The

Institute of Electrical and Electronics Engineers (IEEE) defines RPC in its ISO Remote Procedure Call

Specification, ISO/IEC CD 11578 N6561, ISO/IEC, November 1991.

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 4

Examples of RPC configurations include the following:

 The normal method of operation where the client makes a call and doesn't continue until the

server returns the reply.

 The client makes a call and continues with its own processing. The server doesn't reply.

 A facility for sending several client nonblocking calls in one batch.

 RPC clients have a broadcast facility, i.e., they can send messages to many servers and then

receive all the resulting replies.

 The client makes a nonblocking client/server call; the server signals the call is completed by

calling a procedure associated with the client.

RPC spans the transport layer and the application layer in the Open Systems Interconnection (OSI)

model of network communication. RPC makes it easier to develop an application that includes multiple

programs distributed in a network. Alternative methods for client-server communication include message

queueing and IBM's Advanced Program-to-Program Communication (APPC).

 Though it boasts a wide range of benefits, there are certainly a share of pitfalls that those

who use RPC should be aware of.

 Here are some of the advantages RPC provides for developers and application managers:

 Helps clients communicate with servers via the traditional use of procedure calls in high-level

languages.

 Can be used in a distributed environment, as well as the local environment.

 Supports process-oriented and thread-oriented models.

 Hides the internal message-passing mechanism from the user.

 Requires only minimal effort to rewrite and redevelop the code.

 Provides abstraction, i.e., the message-passing nature of network communication is hidden

from the user.

 Omits many of the protocol layers to improve performance.

On the other hand, some of the disadvantages of RPC include the following:

 The client and server use different execution environments for their respective routines, and

the use of resources (e.g., files) is also more complex. Consequently, RPC systems aren't

always suited for transferring large amounts of data.

 RPC is highly vulnerable to failure because it involves a communication system, another

machine and another process.

 There is no uniform standard for RPC; it can be implemented in a variety of ways.

 RPC is only interaction-based, and as such, it doesn't offer any flexibility when it comes to

hardware architecture.

 GRPC

GRPC is a modern open-source high performance Remote Procedure Call (RPC) framework that can

run in any environment. It can efficiently connect services in and across data centers with pluggable support

for load balancing, tracing, health checking and authentication. It is also applicable in last mile of distributed

computing to connect devices, mobile applications and browsers to backend services.

GRPC is a high performance, open-source framework developed by Google to handle remote

procedure calls (RPCs). GRPC is Google’s approach to a client-server application. It lets client and server

applications communicate transparently, simplifying the process for developers to build connected systems.

Released in August 2016, GRPC has been adopted by enterprises, startups and open-source projects

worldwide.

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 5

GRPC runs in any environment, connecting services in and across data centers with pluggable

support for tracing, health checking, load balancing and authentication. GRPC can also be used to connect

mobile devices, Mobile apps and browsers to backend services.

Developers use GRPC in the last mile of computing in mobile and web clients because it can generate

libraries for Android and iOS. Additionally, it uses standards-based HTTP/2 as transport so it can cross

firewalls and proxies easily.

GRPC clients and servers can run and communicate with each other in various environments,

including a user’s desktop and servers inside Google. Furthermore, GRPC clients can be written in any of

GRPC’s supported languages, including:

 Java (with support for Android)

 Objective-C (for iOS)

 C++

 Ruby

 JSON

 Python

 Go

 C#

For instance, a developer can easily create a GRPC server in Java with clients in Python, Ruby or Go.

Additionally, since the latest Google application program interfaces (APIs) have GRPC versions of

their interfaces, developers can build Google functionality into their applications.

Benefits of using GRPC

GRPC, like other RPC systems, revolves around the idea of defining a service, such as identifying the

methods that can be remotely called with their parameters and return types. However, GRPC lets

developers use more sophisticated technologies that are efficient and scalable, such as HTTP/2 and

streams. Since it is technology-agnostic, it can be used by and interact with server and clients from

several different programming languages.

GRPC is also built upon protocol buffers, also known as protosuns. Protosuns are Google’s tool for

sequencing structured data, which allows for communication and data storage that can be predicted

and analyzed.

Types of GRPC

GRPC lets developers define four types of service methods:

Unary RPC – The client sends one request to the server and gets one response back, the same as

with a normal function call.

Server streaming – The client sends a request to the server and receives a stream of messages back.

The client reads from the returned stream until there are no messages left. Here, GRPC guarantees

message ordering within an individual RPC call.

Client streaming – The opposite of server streaming, the client writes a sequence of messages and

sends them to the server, using a provided stream. Once the client has finished writing the

messages, it waits for the server to read them and return its responses. Once again, GRPC

guarantees message ordering within an individual RPC call.

Bidirectional streaming – Both sides send a sequence of messages via a read-write stream. The two

streams work independently of each other and, as such, the clients and servers can read and write

in any order. For instance, the server reads a message then writes a response. Or the server waits

to receive all the client messages before writing its responses. GRPC preserves the order of messages

in each stream.

 Load balancer

Load balancing refers to efficiently distributing incoming network traffic across a group of backend

servers, also known as a server farm or server pool.

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 6

Modern high‑traffic websites must serve hundreds of thousands, if not millions, of concurrent

requests from users or clients and return the correct text, images, video, or application data, all in a fast

and reliable manner. To cost‑effectively scale to meet these high volumes, modern computing best practice

generally requires adding more servers.

A load balancer acts as the “traffic cop” sitting in front of your servers and routing client requests

across all servers capable of fulfilling those requests in a manner that maximizes speed and capacity

utilization and ensures that no one server is overworked, which could degrade performance. If a single

server goes down, the load balancer redirects traffic to the remaining online servers. When a new server is

added to the server group, the load balancer automatically starts to send requests to it.

In this manner, a load balancer performs the following functions:

 Distributes client requests or network load efficiently across multiple servers

 Ensures high availability and reliability by sending requests only to servers that are online

 Provides the flexibility to add or subtract servers as demand dictates

Different load balancing algorithms provide different benefits; the choice of load balancing method

depends on your needs:

Round Robin – Requests are distributed across the group of servers sequentially.

Least Connections – A new request is sent to the server with the fewest current connections to clients.

The relative computing capacity of each server is factored into determining which one has the least

connections.

Least Time – Sends requests to the server selected by a formula that combines the

fastest response time and fewest active connections. Exclusive to NGINX Plus.

Hash – Distributes requests based on a key you define, such as the client IP address or the request URL.

NGINX Plus can optionally apply a consistent hash to minimize redistribution of loads if the set of upstream

servers’ changes.

IP Hash – The IP address of the client is used to determine which server receives the request.

Random with Two Choices – Picks two servers at random and sends the request to the one that is

selected by then applying the Least Connections algorithm (or for NGINX Plus the Least Time algorithm, if

so configured).

 Benefits of Load Balancing:

 Reduced downtime

 Scalable

 Redundancy

 Flexibility

 Efficiency

III. EXISTING SYSTEM

Dedicated software is required for load balancing. Complex setups need to done for implementation. And at

this moment there are very minimal load balancing tools available for GRPC which makes a new load

balancer necessary introduction to the applications running on GRPC.

Disadvantages:

 This might eat up more space from machine.

 Also, may utilize fair share of CPU which could cause an overall impact on application performance.

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 7

 IV. PROPOSED SYSTEM:

We suggest a java-based load balancing set up that runs on the client’s end with no additional set up or

software’s required. We develop a system that would take the list of servers available and evaluate based

on capacities and implement weighted round robin for choosing the server for routing.

Advantages:

1. Impact on performance is low.

2. Free of cost.

 3.Less dependency on CPU

 V.SYSTEM ACHITECTURE

 ACTIVITY DIAGRAM

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 8

 VI. CONCLUSION:
Here is our project that address problems with existing system and solves them effectively. In the

end, we have achieved a process that load balances the requests equally between two servers.

VII. FUTURE ENHANCENMENT:

Updates are best to continue the legacy of any applications. For this we propose to integrate micro

businesses into the research and try to make the accuracy maximum.

VIII. REFERENCES:

 [1] Al Nuaimi, K., Mohamed, N., Al Nuaimi, M., & Al-Jarod, J. (2012, December). A survey of load balancing

in cloud computing: Challenges and algorithms. In Network Cloud Computing and Applications (NCCA),

2012 Second Symposium on (pp.137-142). IEEE.

[2] Ali, A. D., &Belal, M. A. (2007). Multiple ant colonies optimization for load balancing in distributed

systems. Proceedings of ICTA, 2007.

3] Asha, M. L. & Neethu Myhrer. (2014), Performance Evaluation of Round Robin Algorithm in Cloud

Environment. International Journal of Computer Applications (pp.12-16). ICICT-2014.

[4] Aslam, S., & Shah, M. A. (2015, December). Load balancing algorithm in cloud computing, A survey

of modern techniques. In 2015 National Software Engineering Conference (NSEC) (pp. 30-35). IEEE.

[5] Behalf, V., & Kumar, A. (2014). Comparative Study of Load Balancing Algorithms in Cloud Environment

using Cloud Analyst. International Journal of Computer Applications, 97(1).

[6] Dimi’s. C. (2015). Various Load Balancing Algorithms in Cloud Environment.

[7] Domanial, S. G., & Reddy, G. R. M. (2014, January). Optimal load balancing in cloud computing by

efficient utilization of virtual ma-chines. In 2014 Sixth International Conference on Communication System

and Networks (COMSNETS) (pp. 1-4). IEEE.

[8] Ezaki, O.M., Rashad, M.Z. & Elwood, M.A. (2012), Improved Max-Min Algorithm in Cloud Computing.

Vol. 50-No 12, July 2012, pp.22-27.

[9] Gang Liu, Jing Li & Juancho Xu, An Improved Min-Min Algorithm in Cloud Computing. Proceedings of the

2012 International Conference of Modern Computer Science and Applications (pp.47-50), Springer Berlin

Heidelberg.

[10] Gopinath, P. G., & Vasudevan, S. K. (2015). An in-depth analysis and study of Load balancing

techniques in the cloud computing environment. Procedia Computer Science, 50, 427-432.

[11] Gopinath, P.G., & Vasudevan’s. K. (2015). An in -depth analysis and study of Load balancing

techniques in the cloud computing environment. Procedia Computer Science, 50, 427-432.

[12] Haidari, R.A., Kati, C.P. and Saxena, P.C., 2014, July. A load balancing strategy for Cloud Computing

environment. In Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference

on (pp. 636-641). IEEE.

[13] Haryana, N., & Jangle, D. (2014). Dynamic Method for Load Balancing in Cloud Computing. IOSR

Journal of Computer Engineering (IOSR-JCE), 16(4), 23-28.

[14] Kashyap., & Vira Diya, J. (2014). A survey of various load balancing algorithms in cloud computing.

International Journal of Scientific and Technology Research, 3 (11), 115-19.

TIJER || ISSN 2349-9249 || © July 2022, Volume 9, Issue 7 || www.tijer.org

Technix International Journal for Engineering Research (TIJER) www.tijer.org 9

[15] Katyal, M., &Mishra, A. (2014). A comparative study of load balancing algorithms in cloud computing

environment. axis preprint arXiv:1403.6918.

[16] Kaur, R., & Luthra, P. (2012, December). Load Balancing in Cloud Computing. In Proceedings of

International Conference on Recent Trends in Information, Telecommunication and Computing, ITC.

[17] Khorana, F. F, & Vania, J (2014). Load Balancing in cloud computing.

[18] Mao, Y., Chen, X. and Li, X., 2014. Max–min task scheduling algorithm for load balance in cloud

computing. In Proceedings of International Conference on Computer Science and Information Technology

(pp. 457-465). Springer India.

[19] Mishra, R., & Jaiswal, A. (2012). Ant colony optimization: Absolution offload balancing in cloud.

International Journal of Web & Semantic Technology,3(2), 33.

[20] More, M. S. D., & Mohapatra, A. Load Balancing Strategy Based on Cloud Partitioning Concept.

[21] Nadcap, A., & Marla, V. Cloud Computing–Partitioning Algorithm and Load Balancing Algorithm.

[22] Natyam., Shivaism., &Raj,M.G.(2012). Comparative analysis of load balancing algorithms in cloud

computing. International Journal of Advanced Research in Computer Engineering & Technology (IJAR-CET),

1(3), pp-120.

