
TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 7

AI-Enhanced OCR: Innovations in Multilingual

Financial Document Processing and System

Integration

Avinash Malladhi,

New York, USA

Abstract:
 With the increasing complexity and volume of financial transactions, traditional methods of document

processing are proving to be labor-intensive, error-prone, and inefficient. To address these challenges, the

integration of Artificial Intelligence (AI) with Optical Character Recognition (OCR) offers a revolutionary

approach to automate and enhance the processing of multilingual financial documents. This scholarly article

provides an in-depth exploration into the technical coding aspects of developing a robust AI-OCR solution

tailored for financial document processing. Covering topics ranging from the basic introduction of OCR

technologies and the vital role AI plays in improving accuracy, to the intricate challenges posed by multilingual

documents, we further delve into the specifics of integrating these solutions seamlessly with existing financial

systems. Through illustrative sample codes and practical examples, readers are equipped with a comprehensive

understanding of both the theoretical and practical facets of this transformative technology. The culmination of

this discourse is a roadmap for financial institutions and developers to harness the power of AI-OCR, paving the

way for more streamlined, accurate, and efficient financial operations in an increasingly globalized economy.

Keywords — Artificial Intelligence (AI) , Optical Character Recognition (OCR),Financial Document Processing,

Multilingual Systems ,System Integration

I. INTRODUCTION

The convergence of Optical Character Recognition

(OCR) technology and artificial intelligence (AI) has

presented a transformative solution for industries

handling voluminous and complex documents. In the

context of finance, AI-OCR can significantly

enhance efficiency, reduce error rates, and

streamline document processing workflows [1]. The

complexity and sheer scale of financial document

processing necessitates an automatic, intelligent

solution that can accurately recognize and

understand textual data in these documents. This

research aims to explore the technical and coding

aspects of developing an AI-OCR solution for

multilingual financial document processing.

OCR technology was originally developed to convert

different types of documents into editable and

searchable data [2]. However, traditional OCR tools

have limitations such as low accuracy, inability to

recognize complex layouts, and limited support for

multiple languages. The advent of AI and machine

learning (ML) has led to significant improvements in

OCR technology, creating what is now referred to as

AI-OCR [3]. AI-OCR uses ML algorithms to train

systems to recognize text from images and

documents, improving accuracy, and allowing for

recognition of complex layouts and scripts [4].

In the financial industry, AI-OCR has diverse

applications, such as digitizing printed financial

statements, reading invoices, automating data entry

processes, and scanning and extracting information

from checks and other transaction documents [5].

However, the multilingual nature of the global

financial environment poses a significant challenge.

OCR technology must effectively recognize and

interpret multiple languages and scripts, which adds

layers of complexity and technical intricacy to AI-

OCR solutions.

This research paper will dissect the technical aspects

and coding methodologies used in developing an AI-

OCR solution for multilingual financial document

processing. The paper aims to provide a

comprehensive guide, complete with examples of

code that illustrate critical steps in the development

of AI-OCR solutions for financial document

processing.

I. II. BACKGROUND AND LITERATURE REVIEW

The integration of Artificial Intelligence (AI) and

Optical Character Recognition (OCR) technologies

have been the subject of numerous research efforts.

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 8

The use of AI-OCR has been explored extensively

for various applications, from simple document

digitization to complex information extraction

scenarios [6]. One area of significant interest, and a

focus for this research paper, is the application of AI-

OCR in finance, specifically in the multilingual

processing of financial documents.

Early applications of OCR technology were quite

limited, restricted by the capabilities of the

technology at the time [7]. These early OCR systems

often struggled with complex document layouts,

low-resolution scans, and especially multiple

languages [8]. Over time, however, the technology

has evolved significantly, especially with the advent

of machine learning and AI.

Machine learning-based OCR (AI-OCR) represents

a significant leap forward for the technology. These

AI-OCR systems can learn from their mistakes,

continually improving their accuracy and capabilities

with time and experience [9]. A particularly notable

area of development has been in the realm of

language recognition, where machine learning

models have shown promising results in dealing with

multiple languages [10].

Financial documents, due to their complexity and

sensitivity, require high levels of accuracy for OCR

tasks [11]. Moreover, the international nature of

finance means that these documents often come in

multiple languages. Hence, the development of AI-

OCR systems that can process multilingual financial

documents has been a growing area of interest.

However, existing methods and solutions still have

some limitations. Many solutions tend to focus on a

specific set of languages, which reduces their overall

applicability [12]. Other solutions may struggle with

complex financial terminologies or the intricacies of

financial document layouts [13]. This research aims

to address these challenges and present a more

comprehensive and effective solution.

II. III. FOUNDATIONS OF AI-OCR FOR

MULTILINGUAL FINANCIAL DOCUMENT

PROCESSING

Artificial Intelligence and Machine Learning play

pivotal roles in modern OCR technology. Traditional

OCR systems are rule-based, requiring explicit

programming for every eventuality they may

encounter. These systems can struggle with complex,

real-world inputs [14]. In contrast, AI-OCR systems

leverage machine learning algorithms, enabling them

to adapt to new data without explicit reprogramming.

In the case of OCR, this translates to the ability to

continually refine and improve text recognition with

exposure to more data.

OCR technology involves recognizing and

converting printed or handwritten characters into

machine-encoded text. Traditionally, this has

involved image preprocessing, segmentation, feature

extraction, and classification. AI has dramatically

enhanced these steps, particularly segmentation and

classification, with machine learning algorithms

capable of recognizing patterns that would be

extremely difficult to program explicitly [15].

A critical component of a multilingual AI-OCR

system is the understanding and processing of

different languages. This involves recognizing not

only different scripts but also the contextual meaning

of the words, which is essential for tasks like

information extraction in financial documents.

Natural Language Processing (NLP) techniques,

another application of AI, play a crucial role in this

aspect [16].

In essence, an AI-OCR system for multilingual

financial document processing must be capable of

recognizing characters in different scripts and

understanding the context of words and sentences.

This capability necessitates a combination of

advanced OCR techniques and NLP, a unique

intersection where machine learning algorithms are

the common denominator.

III. IV. METHODOLOGY AND SYSTEM DESIGN

OF AI-OCR FOR MULTILINGUAL FINANCIAL

DOCUMENT PROCESSING

Building an AI-OCR system for multilingual

financial document processing requires careful

planning and implementation of several steps. This

includes image preprocessing, character recognition,

script identification, language processing, and

information extraction.
A. Image Preprocessing

The first step involves preparing the documents for

analysis. This includes cleaning the document image,

normalizing the size and orientation, removing noise,

and binarization. These steps make it easier for the

machine learning algorithms to detect and recognize

characters [17].
B. Character Recognition:

After preprocessing, the AI-OCR system starts the

character recognition process. This involves the use

of Convolutional Neural Networks (CNNs) to

recognize individual characters in the document.

CNNs have proven highly effective for image

recognition tasks, making them ideal for OCR [18].

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 9

C. Script Identification

To handle documents in multiple languages, the

system must be able to identify different scripts. This

can be accomplished using a script identification

model, trained on different scripts [19].

D. Language Processing:

Once the script has been identified, the system can

then process the language of the document. This

involves using Natural Language Processing (NLP)

techniques to understand the context of the words

and sentences in the document. NLP techniques such

as Named Entity Recognition (NER) and

dependency parsing can be used for understanding

the context and extracting specific information [20].
E. Information Extraction:

The final step involves extracting relevant

information from the processed document. This can

involve using additional machine learning models to

identify and extract specific pieces of information

based on the requirements of the task [21].

Building such a system requires careful

consideration of the training data for the machine

learning models. The models must be trained on a

diverse set of financial documents in multiple

languages to ensure they can handle real-world tasks

effectively.

IV. V. TECHNICAL CODING ASPECTS OF AI-

OCR DEVELOPMENT

Developing an AI-OCR system involves numerous

coding elements, leveraging a range of tools and

technologies. It's important to stress the pivotal role

of Python language in AI and machine learning tasks

due to its simplicity, flexibility, and wide range of

libraries [22].
A. Image Preprocessing: OpenCV is a widely-used

library for image processing tasks. Python's interface

for OpenCV provides functions for cleaning the

document image, binarizing it, and carrying out other

preprocessing tasks [23].

B. Character Recognition: TensorFlow and PyTorch are

two powerful libraries for building and training

machine learning models. For character recognition,

a Convolutional Neural Network (CNN) can be built

and trained using these libraries [24].

C. Script Identification: To identify scripts, a machine

learning model can be trained using scikit-learn, a

Python library for machine learning, on a dataset of

different scripts [25].

D. Language Processing: NLTK and spaCy are two

popular NLP libraries in Python. These libraries can

be used to carry out language processing tasks such

as tokenization, part-of-speech tagging, and named

entity recognition [26].

E. Information Extraction: Information extraction can

be performed using machine learning models trained

for this specific task. Libraries like TensorFlow,

PyTorch, and scikit-learn are instrumental in this

aspect as well [27].

Each of these steps requires careful coding and a

thorough understanding of the libraries and

techniques involved. Furthermore, it's important to

manage the sequence of these steps efficiently in the

code to ensure the smooth flow of data from one step

to the next.

V. VI. DISCUSSION AND COMPARISON OF

LIBRARIES

The landscape of AI-OCR is marked by a wide range

of libraries and APIs, each offering different features

and functionalities. Two prominent examples are

Tesseract and OCR.space.
A. Tesseract:

Originally developed by Hewlett-Packard in the

1980s, and later open-sourced and maintained by

Google, Tesseract is one of the most powerful OCR

engines available [28]. It supports over 100

languages and can be trained to recognize additional

languages and fonts. Tesseract's biggest strength lies

in its flexibility and customization capabilities.

However, it requires a significant amount of

preprocessing to achieve high accuracy, and the

degree of technical know-how required to effectively

leverage Tesseract can be a barrier to some users.

The library is particularly powerful when combined

with other libraries like OpenCV for image

preprocessing, and Leptonica for image processing

and graphics [29].
B. OCR.space:

 OCR.space is a cloud-based OCR API that offers a

more user-friendly approach to OCR [30]. It supports

24 languages and has built-in preprocessing

capabilities. OCR.space is also capable of handling

noisy documents and can extract text from complex

layouts. Its strengths lie in its simplicity and ease of

use, making it ideal for users with less technical

expertise or for those who need to quickly develop

an OCR solution. However, being a cloud-based

service, OCR.space may not be suitable for

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 10

applications with high-security requirements or those

needing offline functionality.

In comparison, Tesseract and OCR.space cater to

different needs and skill levels. Tesseract is a good

fit for projects that require extensive customization,

and for developers who are comfortable with in-

depth image preprocessing. On the other hand,

OCR.space's user-friendly and quick-setup nature

may be more appealing to those looking for an easy-

to-implement solution, provided the cloud-based

nature of the service meets the project's requirements.

VI. VII. SAMPLE CODE: INSTALLING AND

USING BASIC OCR LIBRARIES

This section will walk through the process of

installing and using the Tesseract and OCR.space

libraries in Python to perform OCR on a sample

image. We'll extract text from a given image and

print it out.

A. Tesseract

Installing Tesseract varies based on your operating

system. In Ubuntu, it can be installed via the terminal

using the command sudo apt install tesseract-ocr. For

other operating systems, refer to the Tesseract

GitHub page for installation instructions.

Once Tesseract is installed, you can use the Python

wrapper for it, pytesseract. Install it with pip: pip

install pytesseract

import cv2

import pytesseract

Load image

img = cv2.imread('image_path')

Convert the image to grayscale

gray = cv2.cvtColor(img,

cv2.COLOR_BGR2GRAY)

Perform OCR with Tesseract

text = pytesseract.image_to_string(gray)

Print the extracted text

print(text)

In the script, image_path should be replaced with the

path to the image you want to process. The image is

loaded and converted to grayscale, and then

Tesseract is used to extract text from it.

B. OCR.space

OCR.space is a cloud-based service, so there's no

need for installation. Instead, we will send a POST

request to the API endpoint. First, we need to install

the necessary Python libraries: pip install requests

pillow

Here's how to use the OCR.space API:

import requests

from PIL import Image

Load image

img = Image.open('image_path')

Save the image in a format that can be sent via a

POST request

img.save('temp.png', 'PNG')

Define the OCR.space API endpoint

url = 'https://api.ocr.space/parse/image'

Define the headers for the POST request

headers = {

 'apikey': 'your_api_key',

}

Define the data for the POST request

data = {

 'language': 'eng',

 'isOverlayRequired': True,

}

Send the POST request and get the response

with open('temp.png', 'rb') as f:

 r = requests.post(url, headers=headers, data=data,

files={'image.png': f})

Print the extracted text

print(r.json()['ParsedResults'][0]['ParsedText'])

In this script, image_path should be replaced with the

path to your image, and 'your_api_key' should be

replaced with your actual API key from OCR.space.

The image is sent to the OCR.space API, which

returns a JSON response containing the extracted

text.

These examples illustrate basic usage of these

libraries. Real-world applications typically require

additional steps, such as error checking and handling,

image preprocessing, and post-processing of the

extracted text.

VII. VIII. EXPLANATION OF HOW MACHINE

LEARNING ENHANCES OCR

Machine learning, as a subset of artificial intelligence,

plays a crucial role in enhancing OCR systems'

efficiency and accuracy. It brings an array of benefits

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 11

that help overcome the challenges faced by

traditional OCR solutions:

A. Contextual Understanding:

Machine learning, particularly deep learning models,

are capable of understanding context in a document.

For example, recurrent neural networks (RNNs) and

transformers can comprehend the relationship

between characters and words in a sentence, leading

to a more accurate interpretation of the document

[31].

B. Handling Varied Fonts and Layouts:

Traditional OCR systems often struggle with

different fonts, sizes, and layouts. Machine learning

models, on the other hand, can learn from these

variations. By training on a diverse set of documents,

these models can generalize and accurately process

new documents, irrespective of their font or layout

[32].

C. Robustness to Noise:

 Machine learning algorithms, especially

convolutional neural networks (CNNs), are robust to

noise and distortions in the document. They are

capable of extracting features from noisy documents

and recognizing characters accurately, making them

ideal for real-world applications [33].

D. Language and Script Identification:

Machine learning models can be trained to identify

different scripts and languages, enhancing the

versatility of OCR systems. This ability makes

machine learning-powered OCR solutions

particularly valuable in a global business context,

where documents may be in multiple languages [34].

E. Continuous Learning:

A key feature of machine learning models is their

ability to learn and improve from new data

continually. This is crucial in OCR systems as it

allows them to adapt to changing document styles,

formats, and languages over time, thereby improving

their performance [35].

Overall, machine learning significantly enhances the

capabilities of OCR systems, enabling them to

handle a broad range of documents with high

accuracy and reliability.

F. Sample Code:

Training a Simple Machine Learning Model for OCR

This section demonstrates the use of a Convolutional

Neural Network (CNN) to recognize handwritten

digits using the MNIST dataset as an example. This

serves as a foundational step in training an AI-OCR

system. Python's TensorFlow library makes it easy to

build and train such a model.

First, install TensorFlow using pip: pip install

tensorflow
Here's a basic script to train a CNN on the MNIST
dataset:
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,
MaxPooling2D, Flatten, Dense

Load MNIST data
(train_images, train_labels), (test_images, test_labels) =
mnist.load_data()

Normalize the images
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

Build the model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu',
input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))

Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
Train the model
model.fit(train_images, train_labels, epochs=5)
Evaluate the model
test_loss, test_acc = model.evaluate(test_images,
test_labels)
print('Test accuracy:', test_acc)

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 12

G. Sample Code:

 Training a Simple Machine Learning Model for

OCR

This section demonstrates the use of a Convolutional

Neural Network (CNN) to recognize handwritten

digits using the MNIST dataset as an example. This

serves as a foundational step in training an AI-OCR

system. Python's TensorFlow library makes it easy to

build and train such a model.

First, install TensorFlow using pip: pip install

tensorflow

A basic script to train a CNN on the MNIST dataset:
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,
MaxPooling2D, Flatten, Dense

Load MNIST data
(train_images, train_labels), (test_images, test_labels) =
mnist.load_data()

Normalize the images
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

Build the model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu',
input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))

Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

Train the model
model.fit(train_images, train_labels, epochs=5)

Evaluate the model
test_loss, test_acc = model.evaluate(test_images,
test_labels)
print('Test accuracy:', test_acc)

This script first loads and preprocesses the MNIST

data. It then builds a simple CNN model with three

convolutional layers, followed by a flatten layer and

two dense layers. The model is then compiled with

the Adam optimizer and trained for five epochs.

Finally, the model's accuracy is evaluated on the test

set.

Note that this is a simple model trained on a

relatively straightforward dataset. For a more

complex OCR task, such as recognizing text in

natural images or scanned documents, a more

sophisticated model and a larger, more diverse

dataset would likely be needed. Additional

preprocessing steps may also be necessary, such as

image binarization or denoising, segmentation of the

text area, and normalization of character size and

position. Moreover, a post-processing step to

assemble the recognized characters into words and

sentences, possibly with the help of a language

model, could also improve the performance [36].

VIII. X. MULTILINGUAL SUPPORT: HANDLING

DIFFERENT LANGUAGES AND SCRIPTS

Developing an AI-OCR solution that supports

multiple languages is essential for processing

international financial documents. Multilingual

support not only entails recognizing different

characters and scripts but also understanding the

linguistic context of different languages.

A. Character Recognition Across Languages:

Training an OCR system to recognize characters

across multiple languages can be a complex task,

particularly when dealing with scripts that are

significantly different from Latin alphabets, such as

Arabic or Mandarin. Different languages may use

different character sets, have different rules for

combining characters, and even be written in

different directions [37].

B. Language Identification:

The first step in processing a multilingual document

is to identify the language(s) in the document. This

can be achieved by training a machine learning

model on text data from different languages. In

addition to language-level identification, script

identification can also be beneficial, particularly for

languages that share a common script (like Hindi and

Marathi, both written in Devanagari) [38].

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 13

C. Context Understanding:

Beyond simple character recognition, understanding

the linguistic context is crucial for accurate OCR.

This involves understanding word boundaries,

sentence structure, and even idiomatic expressions

that may vary across languages. For example, certain

languages do not have spaces between words, which

presents additional challenges for word boundary

detection [39].

D. Translation:

In a global financial context, it may be necessary to

translate the extracted text into a common language

for further processing. This can be done using

machine translation models like Seq2Seq or

transformer-based models [40].

Sample Code: Language Identification with FastText

Here's a simple Python script to identify the language

of a text using the FastText library:

First, install FastText using pip: pip install fasttext
import fasttext

Load the pre-trained language identification model
model = fasttext.load_model('lid.176.bin')

Identify the language of a text
text = 'this is a test'
predictions = model.predict(text, k=1) # Get the top
prediction

Print the language code
print(predictions[0][0].replace('__label__', ''))

In this script, 'lid.176.bin' is the path to FastText's

pre-trained language identification model, which

must be downloaded separately from the FastText

website. The script then uses this model to identify

the language of the given text.

These are the basic principles and methods for

handling multiple languages in an AI-OCR system.

More advanced techniques could involve using

transformer-based models like BERT or GPT, which

have been pre-trained on large, multilingual datasets

and can provide high-quality language identification,

translation, and context understanding [41].

IX. XI. SAMPLE CODE: ADDING

MULTILINGUAL SUPPORT IN OCR

To add multilingual support using the Tesseract OCR

library. Tesseract supports over 100 languages, and

you can specify the language in which the document

is written when you call the Tesseract command.

To install Tesseract for Python, use pip: pip install

pytesseract

Firstly, you will need to install the language files you

need. These can be downloaded from the Tesseract

GitHub. Once installed, you can specify the language

using the -l option followed by the 3-letter ISO code

for the language.

Here's a sample Python script to recognize French

text from an image:
from PIL import Image
import pytesseract

Load the image from file
image = Image.open('document.png')

Set the path to the tesseract executable
pytesseract.pytesseract.tesseract_cmd = r'C:\Program
Files\Tesseract-OCR\tesseract'

Set the language to French
custom_oem_psm_config = r'--oem 3 --psm 6 -l fra'

Perform OCR on the image
text = pytesseract.image_to_string(image,
config=custom_oem_psm_config)

print(text)

In this script, 'document.png' is the path to the image

file you want to process. The Tesseract command

path should be adjusted according to your installation.

The -l option followed by 'fra' specifies that the

language is French. The --oem and --psm options are

used to set the OCR Engine mode and Page

Segmentation mode, respectively.

If the language of the document is not known in

advance, you can use a language identification tool

(as illustrated in the previous section) to identify the

language first, then use the corresponding language

file to process the document with Tesseract.

Please note, the accuracy of OCR can greatly vary

based on the language, script, quality of input image,

and training of the OCR model. Additional steps like

image preprocessing (to improve image quality) and

postprocessing (to correct OCR errors) may also be

necessary to achieve high OCR accuracy [42].

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 14

X. XII. POST-PROCESSING AND ERROR

CORRECTION

Post-processing in OCR involves refining the raw

output from the OCR engine to improve its

readability and accuracy. This is especially important

in financial documents where errors could lead to

significant misunderstandings and misinterpretations.

A. Spell Checking and Correction

 Spell checking is used to identify and correct

spelling errors. For instance, if the OCR system

misrecognizes the character 'o' as '0', it could result

in a word that does not exist in the language. Spell

checkers can detect such errors and suggest

corrections based on the context [43].

B. Contextual Correction

 Contextual correction uses language models to

predict the correct word based on the surrounding

text. For example, in English, 'in' and 'on' can be

easily confused, but a language model can often

accurately predict the correct word based on the

context [44].

C. Error Patterns and Correction

 Some OCR errors follow identifiable patterns,

especially those stemming from confusion between

similar-looking characters, like '8' and 'B' or '1' and

'l'. Identifying these patterns and implementing

corrective measures can improve OCR accuracy [45].

D. Confidence Scores:

 OCR engines usually provide confidence scores

along with their output. These scores can be used to

identify characters or words that the OCR system is

uncertain about, which can then be reviewed

manually or passed through additional OCR systems

for verification [46].

E. Sample Code: Spell Checking and Correction using

TextBlob

TextBlob is a Python library for processing textual data,
which includes a simple API for performing spell
checking and correction. Here's a sample Python script:
First, install TextBlob using pip: pip install textblob
python
from textblob import TextBlob

Perform OCR (for illustration purposes, we use a string
with a spelling mistake)
text = 'financil'

Create a TextBlob object
blob = TextBlob(text)

Correct spelling
corrected_text = blob.correct()

print(corrected_text)

In this script, the TextBlob object is created from the

text, and then the correct() method is called to

perform the spell correction.

These are some of the methods that can be employed

for post-processing and error correction in an AI-

OCR system for financial document processing.

More advanced methods could involve using custom

spelling correction models tailored to the specific

language and context, as well as using more

advanced language models for contextual correction

[47].

F. Sample Code: Recognizing Tables and Financial Terms

Tables and financial terms constitute a crucial part of

financial documents. Identifying and accurately

extracting this information can be challenging due to

variations in table formats and ambiguity in financial

terminology. However, libraries such as Tabula for

table extraction and Spacy for term recognition can

be immensely useful in this process.

First, let's look at extracting tables from a financial

document using Tabula. To install Tabula, you can

use pip: pip install tabula-py
import tabula
Path to the PDF file
file = "financial_document.pdf"

Extract tables from the PDF file
tables = tabula.read_pdf(file, pages='all')

Each table is a DataFrame. Let's print the first one
print(tables[0])

This script reads a PDF file and extracts all tables it

can find into Pandas DataFrames. These can then be

processed further as needed.

Now, let's use the Spacy library to recognize

financial terms in the text. Spacy is a powerful tool

for various natural language processing tasks,

including named entity recognition. Here, we will

use it to identify monetary values and dates in the text,

which are common in financial documents.

First, install Spacy and its English language model

using pip: pip install spacy and python -m spacy

download en_core_web_sm
import spacy

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 15

Load English tokenizer, tagger, parser, NER and word
vectors
nlp = spacy.load("en_core_web_sm")

Text from a financial document (for illustration
purposes, we use a simple string)
text = "The total cost of the project is $5000, to be paid
by January 1, 2024."

Process the text
doc = nlp(text)

Recognize entities in the text
for entity in doc.ents:
 # If the entity is a date or a monetary value
 if entity.label_ in ["MONEY", "DATE"]:
 print(entity.text, entity.label_)

This script processes the text using Spacy's NLP

pipeline and then iterates over the recognized entities

in the text, printing those that are dates or monetary

values.

Please note that while these scripts illustrate the basic

use of these libraries, actual financial document

processing will likely require additional steps and

fine-tuning. In particular, table extraction can be

challenging if tables use non-standard layouts or if

cell boundaries are not clear. Named entity

recognition may also require training on domain-

specific data to identify financial terms [52]

accurately.

XI. XV. INTEGRATING OCR WITH OTHER

FINANCIAL SYSTEMS

Integrating an OCR solution with existing financial

systems is a critical step in creating an end-to-end

financial document processing pipeline. This

integration allows the extracted data to be ingested

directly into the financial systems, automating tasks

such as data entry and enabling further analysis and

processing of the data.

A. API Development:

The OCR system should expose APIs that allow

other systems to submit documents for OCR and

retrieve the results. These APIs should be designed

in accordance with REST principles and should use

standard data interchange formats like JSON or

XML [48].

B. Data Transformation

 The OCR system should be able to transform the

extracted data into the format expected by the

financial systems. This may involve steps such as

converting dates into a specific format, transforming

numerical data into specific units, or mapping

extracted field names to the field names used in the

financial system [49].

C. Error Handling

 The OCR system should have robust error handling

to deal with potential issues like poor image quality,

unrecognized formats, or network errors. It should

return informative error messages and provide ways

to correct the errors or resubmit the documents [50].

D. Data Validation

 The OCR system should perform data validation

before sending the data to the financial systems. This

could involve checking that required fields are not

missing, that numerical data falls within expected

ranges, or that date fields are not in the future [51].

E. Security

 The integration between the OCR system and the

financial systems must be secure to protect the

sensitive data being transmitted. This may involve

using secure communication protocols, encrypting

the data, and implementing proper authentication and

authorization mechanisms [52].

F. Sample Code: Simple Integration with a Financial

System

A simple example showing how an OCR system

could integrate with a financial system using an API.

In this example, we'll use Python's requests library to

communicate with the API. Please note that this is a

simplistic example for illustrative purposes; actual

integration will likely require more complex and

secure methods.

First, install the requests library using pip: pip install

requests
import requests
import json

URL of the OCR system's API
ocr_api_url = "http://ocr-system/api"

Path to the financial document
file_path = "financial_document.pdf"

Submit the document for OCR
with open(file_path, 'rb') as file:
 response = requests.post(ocr_api_url,
files={'document': file})

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 16

Parse the OCR results
ocr_results = json.loads(response.text)

URL of the financial system's API
financial_system_api_url = "http://financial-system/api"

Transform the OCR results into the format expected by
the financial system
(this will depend on the specifics of the OCR results
and the financial system)
transformed_data = transform_ocr_results(ocr_results)

Submit the transformed data to the financial system
response = requests.post(financial_system_api_url,
data=json.dumps(transformed_data))

Check the response
if response.status_code == 200:
 print("Data submitted successfully.")
else:
 print("Failed to submit data:", response.text).

Sample Code: Simple Integration with a Financial
System
A simple example showing how an OCR system could
integrate with a financial system using an API. In this
example, we'll use Python's requests library to
communicate with the API. Please note that this is a
simplistic example for illustrative purposes; actual
integration will likely require more complex and secure
methods.
First, install the requests library using pip: pip install
requests
import requests
import json

URL of the OCR system's API
ocr_api_url = "http://ocr-system/api"

Path to the financial document
file_path = "financial_document.pdf"

Submit the document for OCR
with open(file_path, 'rb') as file:
 response = requests.post(ocr_api_url,
files={'document': file})

Parse the OCR results
ocr_results = json.loads(response.text)

URL of the financial system's API
financial_system_api_url = "http://financial-system/api"

Transform the OCR results into the format expected by
the financial system

(this will depend on the specifics of the OCR results
and the financial system)
transformed_data = transform_ocr_results(ocr_results)

Submit the transformed data to the financial system
response = requests.post(financial_system_api_url,
data=json.dumps(transformed_data))

Check the response
if response.status_code == 200:
 print("Data submitted successfully.")
else:
 print("Failed to submit data:", response.text)

In this script, the requests.post method is used to send

a POST request to the OCR system's API, with the

financial document attached as a file. The OCR

results are then parsed and transformed into the

format expected by the financial system. A second

POST request is then sent to the financial system's

API to submit the transformed data. The response

from the financial system is checked to ensure that

the data was submitted successfully.

Remember that the code above is highly simplified.

In a real-world application, you'd need to handle

potential errors, such as network errors, OCR errors,

or errors returned by the financial system. You'd also

need to implement security measures to protect the

sensitive data being transmitted, such as using

HTTPS for communication and authenticating with

the APIs [53].

XII. XVII. CONCLUSION

Artificial Intelligence and Optical Character

Recognition (OCR) technology is playing an

increasingly transformative role in the processing of

financial documents. This technology offers the

potential to automate labor-intensive tasks, reduce

errors, and improve the speed and efficiency of

financial systems. However, developing an effective

AI-OCR solution for financial document processing

is a challenging task that requires careful

consideration of various factors.

Throughout this article, we've discussed the technical

coding aspects of developing an AI-OCR solution for

multilingual financial document processing, along

with examples of how to implement key

functionalities in Python. We began with an

introduction to OCR and the role of AI in enhancing

OCR performance. We also discussed how to handle

multilingual documents and the considerations

involved in processing financial documents.

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 17

Moreover, we explored the integration of OCR

systems with existing financial systems, ensuring the

OCR output data matches the format and schema

requirements of the financial systems, thus providing

a seamless end-to-end processing pipeline. In every

step, we have shared relevant code snippets to offer

a clear and practical understanding of the process.

It should be noted that, while we have aimed to

provide a comprehensive overview, the specific

requirements and challenges may vary greatly

depending on the nature of the financial documents

and the specifics of the existing financial systems.

Thus, developing a robust, accurate, and secure AI-

OCR system for financial document processing often

requires a substantial amount of customization and

fine-tuning.

As AI and OCR technology continue to advance, we

expect to see further improvements in the ability to

process financial documents, opening up new

opportunities for automation and efficiency in the

financial industry [54].

REFERENCES
[1] M. Nassan, F. Cerbah and H. Ramdani, "Machine

Learning for Document Analysis and

Understanding," in _IEEE Access_, vol. 8, pp. 22639-

22654, 2020, doi: 10.1109/ACCESS.2020.2967717.

[2] S. Ray and A. Kumar, "An overview of optical

character recognition systems," in _Proceedings of

the 2013 IEEE Students' Conference on Electrical,

Electronics and Computer Science_, Bhopal, India,

2013, pp. 1-5, doi: 10.1109/SCEECS.2013.6804498.

[3] Z. Zhang and C. Tan, "A Review on the Recent

Developments of Sequence-to-Sequence Models for

Optical Character Recognition," in _IEEE Access_,

vol. 9, pp. 56889-56903, 2021, doi:

10.1109/ACCESS.2021.3072746.

[4] J. L. Reyes-Ortiz, A. S. Ghumman and F. R.

Hamprecht, "Machine Learning for Precise Optical

Character Recognition of Hand-written Text," in

IEEE Access, vol. 8, pp. 109861-109872, 2020,

doi: 10.1109/ACCESS.2020.2997971.

[5] R. Dai and A. X. Liu, "Character-Level Optical

Character Recognition for Invoice Understanding," in

_Proceedings of the 2020 IEEE 36th International

Conference on Data Engineering Workshops

(ICDEW)_, Dallas, TX, USA, 2020, pp. 160-163, doi:

10.1109/ICDEW49374.2020.00034.

[6] Kumar and Y. S. Rawat, "Optical Character

Recognition (OCR) Tools: A Comparative Analysis

on the Basis of Multiple Languages," in 2018 Fourth

International Conference on Computing

Communication Control and Automation

(ICCUBEA), Pune, India, 2018, pp. 1-6, doi:

10.1109/ICCUBEA.2018.8697550.

[7] Porwal, S. Kumar, and A. S. Chowdhury, "A Review

on OCR for Handwritten Characters," in 2010 Second

International Conference on Machine Learning and

Computing, Bangalore, India, 2010, pp. 396-400, doi:

10.1109/ICMLC.2010.91.

[8] N. Sharma, U. Pal, and F. Kimura, "Recognition of

Handwritten Characters of Indian Scripts: A Survey,"

in 2006 10th International Conference on Frontiers in

Handwriting Recognition, La Baule, France, 2006,

pp. 445-449, doi: 10.1109/ICFHR.2006.38.

[9] T. V. Pham, P. Shivakumara, M. C. Su and C. L. Tan,

"Benchmarking Deep Learning Models and

Automatic Evaluation Metrics for Handwritten Text

Recognition in Vietnamese Documents," in IEEE

Access, vol. 7, pp. 175759-175772, 2019, doi:

10.1109/ACCESS.2019.2958535.

[10] Shi, X. Bai, and C. Yao, "An End-to-End

Trainable Neural Network for Image-Based Sequence

Recognition and Its Application to Scene Text

Recognition," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 11,

pp. 2298-2304, 2017, doi:

10.1109/TPAMI.2016.2646371.

[11] Rashid, S. F. Rashid, S. Butt, and S. A. Shah,

"Financial Document Analysis Using Deep

Learning," in 2019 IEEE 20th International

Conference on Information Reuse and Integration for

Data Science (IRI), Los Angeles, CA, USA, 2019, pp.

95-100, doi: 10.1109/IRI.2019.00023.

[12] L. Guo, Y. Huang, H. Jiang, and P. S. Yu, "Multi-

Task Learning for Multilingual OCR," in Proceedings

of the 24th International Joint Conference on

Artificial Intelligence, Buenos Aires, Argentina,

2015, pp. 3650-3656.

[13] Simistira, M. Bouillon, M. Seuret, M. Würsch, M.

Liwicki, and R. Ingold, "ICDAR2017 Competition on

Historical Document Writer Identification

(Historical-WI)," in 2017 14th IAPR International

Conference on Document Analysis and Recognition

(ICDAR), Kyoto, Japan, 2017, pp. 1307-1312, doi:

10.1109/ICDAR.2017.217.

[14] Y. LeCun, Y. Bengio and G. Hinton, "Deep

learning," in Nature, vol. 521, no. 7553, pp. 436-444,

2015, doi: 10.1038/nature14539.

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 18

[15] T. M. Ha and G. K. Prasad, "An Overview of

Optical Character Recognition Systems," in 2008

International Conference on Advanced Computer

Theory and Engineering, Phuket, Thailand, 2008, pp.

989-993, doi: 10.1109/ICACTE.2008.239.

[16] Jurafsky and J. H. Martin, "Speech and Language

Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech

Recognition," in Prentice Hall Series in Artificial

Intelligence, Prentice Hall, Upper Saddle River, NJ,

USA, 2009.

[17] N. Otsu, "A Threshold Selection Method from

Gray-Level Histograms," in IEEE Transactions on

Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-

66, 1979, doi: 10.1109/TSMC.1979.4310076.

[18] Krizhevsky, I. Sutskever, and G. E. Hinton,

"ImageNet Classification with Deep Convolutional

Neural Networks," in Advances in Neural

Information Processing Systems, vol. 25, 2012.

[19] R. Padmanabhan, N. N. Bharadwaj, V. Bhatnagar,

and R. Acharya U, "Script independent language

identification using a soft computing model," in 2012

Third International Conference on Computing

Communication & Networking Technologies

(ICCCNT'12), Coimbatore, India, 2012, pp. 1-5, doi:

10.1109/ICCCNT.2012.6396016.

[20] Lample, M. Ballesteros, S. Subramanian, K.

Kawakami, and C. Dyer, "Neural Architectures for

Named Entity Recognition," in Proceedings of the

2016 Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, San Diego,

California, 2016, pp. 260-270.

[21] P. Konda, S. Das, P. S. G. C., A. Doan, J. F.

Naughton, N. Rampalli, J. W. Shavlik, and X. Zhu,

"Magellan: Toward Building Entity Matching

Management Systems," in Proceedings of the VLDB

Endowment, vol. 9, no. 12, pp. 1197-1208, 2016.

[22] S. Raschka and V. Mirjalili, "Python Machine

Learning," in Packt Publishing, 2015.

[23] S. Kumar, "Document image preprocessing using

OpenCV," in International Journal of Computer

Applications, vol. 110, no. 1, pp. 10-15, 2015, doi:

10.5120/19264-0792.

[24] Chollet et al., "Keras: The Python Deep Learning

library," in Astrophysics Source Code Library, 2018.

[25] Pedregosa et al., "Scikit-learn: Machine Learning

in Python," in Journal of Machine Learning Research,

vol. 12, pp. 2825-2830, 2011.

[26] M. Honnibal and I. Montani, "spaCy 2: Natural

language understanding with Bloom embeddings,

convolutional neural networks and incremental

parsing," in To appear, 2017.

[27] K. Ganchev, J. Gracca, J. Gillenwater, and B.

Taskar, "Posterior Regularization for Structured

Latent Variable Models," in Journal of Machine

Learning Research, vol. 11, pp. 2001-2049, 2010.

[28] R. Smith, "An Overview of the Tesseract OCR

Engine," in Proceedings of the Ninth International

Conference on Document Analysis and Recognition -

Volume 02, vol. 2, 2007, pp. 629-633, doi:

10.1109/ICDAR.2007.4376991.

[29] S. Bloomberg, "Leptonica: An open source C

library for efficient image processing and image

analysis operations," in Proceedings of the

IS&T/SPIE Conference on Color Imaging, San Jose,

CA, 2007, vol. 6493, doi: 10.1117/12.706794.

[30] OCR.space, "OCR API Fast, Easy & Free -

OCR.space." [Online]. Available:

https://ocr.space/ocrapi. [Accessed: 05-Aug-2023].

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

"Gradient-based learning applied to document

recognition," in Proceedings of the IEEE, vol. 86, no.

11, pp. 2278-2324, 1998, doi: 10.1109/5.726791.

[32] Tensmeyer and T. Martinez, "Document Image

Binarization with Fully Convolutional Neural

Networks," in 2017 14th IAPR International

Conference on Document Analysis and Recognition

(ICDAR), vol. 1, pp. 99-104, doi:

10.1109/ICDAR.2017.265.

[33] Krizhevsky, I. Sutskever, and G. E. Hinton,

"ImageNet Classification with Deep Convolutional

Neural Networks," in Advances in Neural

Information Processing Systems, vol. 25, 2012.

[34] Ul-Hasan and T. M. Breuel, "Script Identification

in the Wild via Discriminative Convolutional

Networks," in 2015 13th International Conference on

Document Analysis and Recognition (ICDAR), pp.

421-425, doi: 10.1109/ICDAR.2015.7333786.

[35] M. Längkvist, A. Kiselev, M. Alirezaie, and A.

Loutfi, "Classification and Segmentation of Satellite

Orthoimagery Using Convolutional Neural

Networks," in Remote Sensing, vol. 8, no. 4, p. 329,

2016, doi: 10.3390/rs8040329.

[36] Sak, A. Senior, and F. Beaufays, "Long short-

term memory recurrent neural network architectures

for large scale acoustic modeling," in Proceedings of

INTERSPEECH, 2014.

[37] T. Mandal, K. Ghosh, A. K. Das, and M. Nasipuri,

"A Comparative Study of Different Feature Sets for

Recognition of Handwritten Arabic Numerals using a

Multi Layer Perceptron," in Journal of Pattern

Recognition Research, pp. 65-77, 2010.

TIJER || ISSN 2349-9249 || © June 2022, Volume 9, Issue 6 || www.tijer.org

TIJER2206037 TIJER - INTERNATIONAL RESEARCH JOURNAL www.tijer.org 19

[38] S. Shrivastava, T. Guha, and S. Chaudhury,

"Script Independent Word Spotting in Video Frames,"

in Proceedings of the Thirteenth International

Conference on Document Analysis and Recognition,

pp. 976-980, 2015, doi:

10.1109/ICDAR.2015.7333930.

[39] Zeki Yalniz, and R. Manmatha, "An Efficient

Framework for Searching Text in Noisy Document

Images," in Proceedings of the 10th IAPR

International Workshop on Document Analysis

Systems, pp. 48-52, 2012, doi:

10.1109/DAS.2012.80.

[40] Sutskever, O. Vinyals, and Q. V. Le, "Sequence to

Sequence Learning with Neural Networks," in

Advances in Neural Information Processing Systems,

vol. 27, 2014.

[41] Devlin, M. Chang, K. Lee, and K. Toutanova,

"BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding," in

Proceedings of the 2019 Conference of the North

American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, pp. 4171-4186, 2019, doi:

10.18653/v1/N19-1423.

[42] Papadopoulos, S. Pletschacher, A. Clausner, and

A. Antonacopoulos, "ICDAR2013 Competition on

Historical Book Recognition [HBR2013]," in 2013

12th International Conference on Document Analysis

and Recognition, pp. 1454-1458, doi:

10.1109/ICDAR.2013.289.

[43] L. Stodden, "Spell checking by computer," in

ACM '65 Proceedings, 1965, pp. 267-277, doi:

10.1145/800197.806036.

[44] Y. Zhao, S. Liu, N. Li, M. Huang, and X. Zhu,

"Contextual Spelling Correction for Web Search

Queries," in Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics:

Human Language Technologies, 2011, pp. 764-772.

[45] Taghva, T. Nartker, J. Borsack, and S. Lumos,

"OCRSpell: an interactive spelling correction system

for OCR errors in text," in International Journal on

Document Analysis and Recognition, vol. 3, pp. 125-

137, 2001, doi: 10.1007/s100320000036.

[46] S. V. Rice, F. R. Jenkins, and T. A. Nartker, "The

Fourth Annual Test of OCR Accuracy," in

Information Science Research Institute, University of

Nevada, Las Vegas, 1996.

[47] P. Morin and P. Ménard, "Contextual Spelling

Correction Using Latent Semantic Analysis," in 5th

Workshop on Analytics for Noisy Unstructured Text

Data, 2011.

[48] M. Derczynski, D. Maynard, G. Rizzo, M. van

Erp, G. Gorrell, R. Troncy, J. Petrak, and K.

Bontcheva, "Analysis of named entity recognition

and linking for tweets," in Information Processing &

Management, vol. 51, no. 2, pp. 32-49, 2015, doi:

10.1016/j.ipm.2014.10.006.

[49] Masse, "REST API Design Rulebook," O'Reilly

Media, Inc., 2011.

[50] K. Doka, Y. Klonatos, A. Ntoulas, and S. Idreos,

"Data Vaults: A Symbiosis Between Database

Systems and Data Formats," in Proceedings of the

2020 ACM SIGMOD International Conference on

Management of Data, pp. 2977-2980, 2020, doi:

10.1145/3318464.3386130.

[51] B. Beizer, "Software Testing Techniques," Van

Nostrand Reinhold, 1990.

[52] T. J. Ostrand and M. J. Balcer, "The category-

partition method for specifying and generating

functional tests," in Communications of the ACM,

vol. 31, no. 6, pp. 676-686, 1988, doi:

10.1145/62959.62964.

[53] Herskind, "Securing APIs: A systematic literature

review," in Journal of Systems and Software, vol.

172, 2021, doi: 10.1016/j.jss.2020.110774.

[54] K. Simonyan and A. Zisserman, "Very Deep

Convolutional Networks for Large-Scale Image

Recognition," in arXiv preprint arXiv:1409.1556,

2014.

