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Introduction and Preliminaries 
The fixed point theory has been continuously studied by many researchers since 1922 with the collaboration 

of Banach fixed point theorem. Fixed point theorems are very important tools for proving the existence and 

uniqueness of the solutions to various mathematical models. It can be applied to, for example, variational 

inequalities, optimization, and approximation theory.. It is well known that the contractive-type conditions are 

very indispensable in the study of fixed point theory. The first important result on fixed points for contractive-

type mappings was the well-known Banach-Caccioppoli theorem which was published in 1922  . Later in 1968, 

Kannan studied a new type of contractive mappings. Since then, there have been many results related to 

mappings satisfying various types of contractive inequalities and references contained therein. 
         Samet et al.  gives  a new category of contractive-type mappings known as 𝛼-𝛼 contractive - type 

mappings. The results obtained by Samet et al.  extended and generalized the existing fixed point results in 

the literature, in particular the Banach contraction principle. Salimi et al.  and Karapinar and Samet  

generalized the 𝛼-𝛼 contractive-type mappings and obtained various fixed point theorems for this  contractive 

mappings . 
Most of papers have considered the 𝛼-𝛼 contractive-type mapping for a nondecreasing mapping 𝛼 : [0, +∞) 

→ [0, +∞) with  < ∞ for all 𝛼 ∈ (0, +∞). The convergence of 

  and nondecreasing condition for 𝛼 are restrictive and it is a fact that such a mapping is 

differentiable almost everywhere and hence continuous why was one of our aims to write this paper in order 

to consider a family of mappings 𝛼 : [0, +∞) → [0, +∞) by relaxing nondecreasing condition and the 

convergence of the series 

. This paper is inspired and motivated by research works, we will introduce a new family of mappings 

on [0, +∞) and prove the fixed-point theorems for mappings using properties of this new family in complete 

metric spaces. By applying our obtained results, we also assure the fixed point theorems in partially ordered 

complete metric spaces and give the applications to ordinary differential equations. 
In the rest of the paper, we introduce some notations and definitions that will be used . 

 
Definition (1): - Let 𝛼 : 𝛼 → 𝛼 and let 𝛼 : 𝛼 × 𝛼 → [0, +∞). We say that 𝛼 is 𝛼-admissible if, for   all 𝛼, 𝛼 ∈ 𝛼,     

𝛼(𝛼, 𝛼) ≥ 1 implies 𝛼(𝛼𝛼, 𝛼𝛼) ≥ 1. 

In 2012, Samet et al.  introduced the concept of 𝛼-𝛼contractive-type mappings, where             𝛼 ∈ Ψ1 and  Ψ1 

= { 𝛼 : 𝛼 : [0, +∞)→ [0, +∞) is nondecreasing with lim n=1 to ∞  Σ 𝛼𝛼 (𝛼) < ∞,                  ∀ 𝛼 ∈ (0, +∞) } .    
Lemma (2):- - Suppose that 𝛼 : [0, +∞) → [0, +∞). If 𝛼 is nondecreasing, then for each                        𝛼 ∈ (0, 

+∞), lim𝛼 → ∞𝛼𝛼(𝛼) = 0 implies that 𝛼(𝛼) < 𝛼. 

Definition(3):-  Let (𝛼, 𝛼) be a metric space and let 𝛼 : 𝛼 → 𝛼 be a mapping. We say that 𝛼 is an 𝛼-𝛼-contractive 

mapping if there exist two functions 𝛼 : 𝛼 × 𝛼 → [0, +∞) and                                      𝛼 : [0, +∞) → [0, +∞) where 

𝛼 ∈ Ψ1 such that 

𝛼 (𝛼, 𝛼) 𝛼 (𝛼𝛼, 𝛼𝛼) ≤ 𝛼 (𝛼 (𝛼, 𝛼)) , (2) for all 𝛼, 𝛼 ∈ 𝛼. 
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 The authors assured the existence of the fixed point theorems for the mentioned mappings satisfying 

𝛼admissibility in the complete metric spaces. 

Recently, Salimi et al.  modified the concept of 𝛼-admissibility. 

Definition (4): -. Let 𝛼 : 𝛼 → 𝛼 and 𝛼 , 𝛼 : 𝛼 × 𝛼 → [0, +∞). We say that 𝛼 is 𝛼-admissible with respect to 𝛼 if, 

for all 𝛼, 𝛼 ∈ 𝛼, 𝛼(𝛼, 𝛼) ≥ 𝛼(𝛼, 𝛼) implies 𝛼(𝛼𝛼, 𝛼𝛼) ≥ 𝛼(𝛼𝛼, 𝛼𝛼). 

Remark (5):- If we suppose that 𝛼(𝛼, 𝛼) = 1, for all 𝛼, 𝛼 ∈ 𝛼.  

Definition (6):- Let T : X → X and let α : X x X → [ 0, ∞ ] . We say that T is α – admissible if , for all x, y ϵ 

X, α ( x, y ) ≥ 1 implies α ( Tx, Ty ) ≥ 1. 
Salimi et al.  proved the existence of fixed point theorems for generalized 𝛼-𝛼-contractive-type mappings 

where 𝛼 ∈ Ψ1. They also assure the fixed point theorems generalized 𝛼-𝛼-contractive-type mappings where 𝛼 is 

a nondecreasing continuous mapping and 𝛼(0) = 0. 

In this work, we will introduce a new family of mappings on [0, +∞) without assuming the nondecreasing 

condition for 𝛼 and prove the fixed point theorems for 𝛼-𝛼-contractivetype mappings using properties of this 

new family in complete metric spaces. We will use our result to obtain fixed point results in partially ordered 

complete metric spaces and to give an application to nonlinear differential equations. 

Main Results 
We now introduce a new family Ψ2 of mappings and prove the existence of fixed point results for 𝛼-𝛼-

contractive-type mappings where 𝛼 ∈ Ψ2. 

Denote by Ψ2 the family of mappings 𝛼 : [0, +∞) → [0, +∞) such that 

(i)   𝛼 is an upper semicontinuous mapping from the right; 

(ii)   𝛼(𝛼) < 𝛼 for all 𝛼 ∈ (0, +∞); (iii) 𝛼(0) = 0. 

Remark (7):-  Since every nondecreasing mapping is differentiable almost everywhere, we observe that 

nondecreasing condition is closed to continuity and it is restrictive. 

Example (8):-- The floor function 𝛼(𝛼) = ⌊ 𝛼⌋  is upper semicontinuous function from the right and 

nondecreasing but is not continuous. 
 

Theorem(9):- Let (𝛼, 𝛼) be a complete metric space and 𝛼 ∈ Ψ2. Suppose that 𝛼 : 𝛼 → 𝛼 is a     mapping satisfying 

the following conditions: 

  (i)        𝛼 is 𝛼-admissible with respect to 𝛼; 

 (ii)       if  𝛼, 𝛼 ∈ 𝛼 and 𝛼(𝛼, 𝛼) ≥ 𝛼(𝛼, 𝛼), then 𝛼(𝛼𝛼, 𝛼𝛼) ≤ 𝛼(𝛼(𝛼, 𝛼)); 

 (iii)      there exists 𝛼0 ∈ 𝛼 such that 𝛼(𝛼0, 𝛼𝛼0) ≥ 𝛼(𝛼0, 𝛼𝛼0); 

 (iv)       𝛼 is continuous or if {𝛼𝛼} is a sequence in 𝛼 such that 𝛼(𝛼𝛼, 𝛼𝛼+1) ≥ 𝛼(𝛼𝛼, 𝛼𝛼+1) for all      𝛼 ∈ N and 𝛼𝛼 → 𝛼 

∈ 𝛼 as 𝛼 → ∞, and then 𝛼(𝛼𝛼, 𝛼) ≥ 𝛼(𝛼𝛼, 𝛼) for all 𝛼 ∈ N. 

Then, 𝛼 has a fixed point. 

Proof:-  Since 𝛼0 ∈ 𝛼, there exists 𝛼1 such that 𝛼1 = 𝛼𝛼0.Therefore, we can construct the sequence {𝛼𝛼} in 𝛼 such 

that 𝛼𝛼+1 = 𝛼𝛼𝛼, ∀𝛼 ∈ N.  

If 𝛼𝛼+1 = 𝛼𝛼, for some 𝛼 ∈ N, then 𝛼 has a fixed point. Assume that 𝛼𝛼  ≠ 𝛼𝛼+1 for all 𝛼 ∈ N. Since 𝛼(𝛼0, 𝛼1) = 𝛼(𝛼0, 

𝛼𝛼0) ≥ 𝛼(𝛼0, 𝛼𝛼0) and 𝛼 is 𝛼-admissible with respect to 𝛼, we obtain that 

𝛼 (𝛼1, 𝛼2) = 𝛼 (𝛼𝛼0, 𝛼𝛼1) ≥ 𝛼 (𝛼𝛼0, 𝛼𝛼1) =  𝛼 (𝛼1  

By continuing the process as above, we have 

𝑥2) 

       𝛼 (𝛼𝛼, 𝛼𝛼+1) ≥ 𝛼 (𝛼𝛼, 𝛼𝛼+1) ,   ∀ 𝛼 ∈ N. 

Applying (ii), we obtain that 

 

𝛼 (𝛼𝛼, 𝛼𝛼+1) = 𝛼 (𝛼𝛼𝛼−1, 𝛼𝛼𝛼) ≤ 𝛼 (𝛼 (𝛼𝛼−1, 𝛼𝛼))  , for 

all 𝛼 ∈ N. Since 𝛼(𝛼) < 𝛼 for all 𝛼 ∈ (0, +∞), we 

have 

 

𝛼 (𝛼𝛼, 𝛼𝛼+1) ≤ 𝛼 (𝛼 (𝛼𝛼−1, 𝛼𝛼)) < 𝛼 (𝛼𝛼−1, 𝛼𝛼) ,  
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for all 𝛼 ∈ N. Therefore, {𝛼(𝛼𝛼, 𝛼𝛼+1)} is a nonincreasing sequence. It follows that there exists    𝛼 ≥ 0 such that  
lim
η→∞

 𝛼 (𝛼𝛼, 𝛼𝛼+1) = c  

We will prove that 𝛼 = 0. Suppose that 𝛼 > 0. Since 𝛼 is upper semicontinuous from the right using , we have  𝛼 
= lim

η→∞
  sup 𝛼 (𝛼𝛼, 𝛼𝛼+1) 

                                    ≤  lim
η→∞

 sup 𝜓 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) ≤ 𝜓 (𝑐) < 𝑐, 

which is a contradiction. Therefore, 

 lim
η→∞

 𝑑 (𝑥𝑛, 𝛼𝛼+1) = 0.  

This implies that for each 𝑘 ∈ N, there exists 𝑛𝑘 ∈ N such that 

We obtain 

that 

 

𝑑 (𝑥𝑛k, 𝑥𝑛k+ 1) < 
1

2𝑘
  

 

 

 ∑∞
𝑘=1 𝑑 (𝑥𝑛 , 𝑥𝑛 +1) < ∞. 

  

 

 

Therefore, {𝑥𝑛𝑘} is a Cauchy sequence and so converges to some 𝑥 ∈ 𝑋. By continuity of 𝑇, we have 
 lim

η→∞
𝑥𝑛k+1 =  lim

η→∞
 𝑇𝑥𝑛k = Tx.  

This implies that 𝑥 is a fixed point of 𝑇. On the other hand, since 

𝛼 (𝑥𝑛𝑘, 𝑥𝑛𝑘+1) ≥ 𝜂 (𝑥𝑛𝑘, 𝑥𝑛𝑘+1) , ∀ 𝑘 ∈ N  and {𝑥𝑛𝑘} converges to 𝑥, we obtain that 

 𝛼 ( 𝑥𝑛𝑘, 𝑥 ) ≥ 𝜂 ( 𝑥𝑛𝑘, 𝑥 ),   ∀ 𝑘 ∈ N.  

         Using (ii), for each 𝑘 ∈ N, we have 

              𝑑 (𝑇𝑥, 𝑥) ≤ 𝑑 (𝑇𝑥, 𝑇𝑥𝑛𝑘) + 𝑑 (𝑇𝑥𝑛𝑘, 𝑥)  

≤ 𝜓 (𝑑 (𝑥𝑛𝑘, 𝑥)) + 𝑑 (𝑥𝑛𝑘+1, 𝑥) . 

Since 𝜓 is upper semicontinuous from the right, we obtain that 

 lim sup 𝜓 (𝑑 (𝑥𝑛𝑘, 𝑥)) ≤ 𝜓 (0) = 0.  

                 𝑘 → ∞ 

By taking the limit as 𝑘 → ∞, this yields 𝑑(𝑇𝑥, 𝑥) = 0 and hence 𝑇𝑥 = 𝑥.  

Theorem(10):-  Suppose all hypotheses of Theorem (9) hold. 

Assume that, for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧) and 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧). Then, 𝑇 has a 

unique fixed point. 

Proof:-  Assume that 𝑥 and 𝑦 are two fixed points of 𝑇. This implies that there exists 𝑧 ∈ 𝑋 such that 

                              𝛼 (𝑥, 𝑧) ≥ 𝜂 (𝑥, 𝑧) ,              𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧) .  

Since 𝑇 is 𝛼-admissible with respect to 𝜂, for each 𝑛 ∈ N, we obtain that 

         𝛼 (𝑥, 𝑇𝑛𝑧) ≥ 𝜂 (𝑥, 𝑇𝑛𝑧) ,                                   𝛼 (𝑦, 𝑇𝑛𝑧) ≥ 𝜂 (𝑦, 𝑇𝑛𝑧) . 

It follows that 

𝑑 (𝑥, 𝑇𝑛+1𝑧) = 𝑑 (𝑇𝑥, 𝑇𝑛+1𝑧) ≤ 𝜓 (𝑑 (𝑥, 𝑇𝑛𝑧)) < 𝑑 (𝑥, 𝑇𝑛𝑧) . 

Therefore, {𝑑(𝑥, 𝑇𝑛𝑧)} is a nonincreasing sequence and then converges to some 𝑐 ∈ R. We will show that 𝑐 = 0. 

Suppose that 𝑐 > 0. Since 𝜓 is upper semicontinuous from the right, we have 
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𝑐 = lim sup 𝑑 (𝑥, 𝑇𝑛+1𝑧)≤ lim sup 𝜓 (𝑑 (𝑥, 𝑇𝑛𝑧)) ≤ 𝜓 (𝑐) < 𝑐, 

     𝑛 → ∞               𝑛 → ∞ 

which is a contradiction. It follows that       lim
η→∞

𝑑 (𝑥, 𝑇𝑛 z) = 0 ,  

  Similarly, by the same argument, we can prove that lim
η→∞

𝑑 ( y, Tnz ) = 0  

Since the limit of the sequence is unique, we have 𝑥 = 𝑦.  

Applying Theorems (9) and (10), we immediately obtain the following result. 

Corollary(11):- Let (𝑋, 𝑑) be a complete metric space and 𝜓 ∈ Ψ2. Suppose that 𝑇 : 𝑋 → 𝑋 is an 𝛼-𝜓-contractive 

mapping satisfying the following conditions: 

(i) 𝑇 is 𝛼-admissible; 

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 1; 

(iii) 𝑇 is continuous or if {𝑥𝑛} is a sequence in 𝑋 such that 

𝛼 (𝑥𝑛, 𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, and then 𝛼 (𝑥𝑛, 𝑥) ≥ 1 

 for all 𝑛 ∈ N; 

(iv) for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that 𝛼 (𝑥, 𝑧) ≥ 1 and 𝛼 (𝑦, 𝑧) ≥ 1. 

Then, 𝑇 has a unique fixed point. 

Bhaskar and Lakshmikantham  introduced the definition of coupled fixed points. 

Definition (11):-  Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a given mapping. We say that (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is a coupled fixed point of 

𝐹 if 

 𝐹 (𝑥, 𝑦) = 𝑥,        𝐹 (𝑦, 𝑥) = 𝑦.  

Remark (12):- Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a given mapping. Define the mapping 𝑇 : 𝑋 × 𝑋 → 𝑋 × 𝑋                                        

by       𝑇 (𝑥, 𝑦) = (𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) ∀   (𝑥, 𝑦) ∈ 𝑋 × 𝑋.  

Therefore, (𝑥, 𝑦) is a coupled fixed point of 𝐹 if and only if (𝑥, 𝑦) is a fixed point of 𝑇. 

Theorem (13):- Let (𝑋, 𝑑) be a complete metric space and 𝐹 : 𝑋 × 𝑋 →  𝑋 be a given mapping. 

Suppose that there exist  𝜓 ∈ Ψ2 and a function 𝛼 : 𝑋2 × 𝑋2 → [0, +∞) such that 

    𝛼 ((𝑥, 𝑦) , (𝑢, V)) 𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) 

𝜓 (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)) ,        for all ( x, y) ϵ X  

             

Suppose that, 

(i) for all ( x, y ), (u,V) ∈ 𝑋 × 𝑋, one has   𝛼 ((𝑥, 𝑦) , (𝑢, V)) ≥ 1 

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝛼 ((𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) , (𝐹 (𝑢, V) , 𝐹 (V, 𝑢))) ≥ 1; 

(ii) there exists (𝑥0, 𝑦0) ∈ 𝑋 × 𝑋 such that 

                                       𝛼 ((𝑥0, 𝑦0) , (𝐹 (𝑥0, 𝑦0) , 𝐹 (𝑦0, 𝑥0))) ≥ 1, 

                                       𝛼 ((𝐹 (𝑦0, 𝑥0) , 𝐹 (𝑥0, 𝑦0)) , (𝑦0, 𝑥0)) ≥ 1; 

(iii) 𝐹 is continuous. 

                Then, 𝐹 has a coupled fixed point. 

Theorem(14):- Let (𝑋, 𝑑) be a complete metric space and 𝐹 : 𝑋 × 𝑋→𝑋 be a given mapping. Suppose that 

there exist 

                                𝜓 ∈ Ψ2 and a function 𝛼 : 𝑋2 × 𝑋2 → [0, +∞) such that 

𝛼 ((𝑥, 𝑦) , (𝑢, v)) 𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, v))   ≤ 
1

2
  𝜓 (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, v)) , 

for all ( x, y ), ( u, v ) ∈ 𝑋 × 𝑋. Suppose that, 
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(i) for all ( x, y ) , ( u, v) ∈ 𝑋 × 𝑋, we have 

𝛼 ((𝑥, 𝑦) , (𝑢, v )) ≥ 1 

⇒ 𝛼 ((𝐹 (𝑥, 𝑦), 𝐹 (𝑦, 𝑥)) , (𝐹 (𝑢, v ), 𝐹 (V, 𝑢))) ≥1  

(ii) there exists (𝑥0, 𝑦0) ∈ 𝑋 × 𝑋 such 

that 𝛼 ((𝑥0, 𝑦0) , (𝐹 (𝑥0, 𝑦0) ,                

𝐹 (𝑦0, 𝑥0))) ≥ 1, 

 

𝛼 ((𝐹 (𝑦0, 𝑥0) , 𝐹 (𝑥0, 𝑦0)) , (𝑦0, 𝑥0)) ≥ 1; 

(iii) if {𝑥𝑛} and {𝑦𝑛} are sequences in 𝑋 

such that 

𝛼 ((𝑥𝑛, 𝑦𝑛) , (𝑥𝑛+1, 𝑦𝑛+1)) ≥ 1, 

 

𝛼 ((𝑦𝑛+1, 𝑥𝑛+1) , (𝑦𝑛, 𝑥𝑛)) ≥ 1, 

 𝑥𝑛 → 𝑥 ∈ 𝑋, 𝑦𝑛 → 𝑦 ∈ 𝑋 as 𝑛 → ∞, 

then 

 

𝛼 ((𝑥𝑛, 𝑦𝑛), (𝑥, 𝑦)) ≥ 1,𝛼 ((𝑦, 𝑥), (𝑦𝑛, 𝑥𝑛)) ≥1  
 

Then, 𝐹 has a coupled fixed point. 

Theorem(14):- Suppose that all hypotheses of Theorem 17 (resp., Theorem 18) hold. Assume that, for all (x, 

y), (u, v) ∈ 𝑋 × 𝑋, there exists (𝑧1, 𝑧2) ∈ 𝑋 × 𝑋 such that 

𝛼 ((𝑥, 𝑦), (𝑧1, 𝑧2)) ≥ 1, 𝛼 ((𝑧2, 𝑧1), (𝑦, 𝑥)) ≥ 1, 𝛼 ((𝑢, v), (𝑧1, 𝑧2)) ≥ 1, 𝛼 ((𝑧2, 𝑧1), (v, 𝑢)) ≥ 1. 

Then, 𝐹 has a unique coupled fixed point. 

Consequences:-  
We now prove the fixed point theorems in complete metric spaces and partially ordered complete metric spaces 

using our obtained results. 

Theorem(15):-  Let (𝑋, 𝑑) be a complete metric space and 𝑇 : 𝑋 → 𝑋 be a mapping satisfying 

                              𝑑 (𝑇𝑥, 𝑇𝑦) ≤  𝑘 𝑑(𝑥, 𝑦) ,       for all 𝑥, 𝑦 ∈ 𝑋,   where 𝑘 ∈ [0, 1).  

                          Then, 𝑇 has a unique fixed point. 

Proof. Let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) be mappings defined by         

                    𝛼 (𝑥, 𝑦) = 1, 𝜂 (𝑥, 𝑦) = 1 ∀ 𝑥, 𝑦 ∈ 𝑋. 

It follows that 𝑇 is 𝛼-admissible with respect to 𝜂. Suppose that 𝜓 :  [0, +∞) → [0, +∞) defined by 𝜓(𝑡) =  𝑘𝑡  
for all 𝑡 ∈ [0, +∞). This implies that 𝜓 is upper semicontinuous from the right, 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ (0, +∞) and 

𝜓(0) = 0. Further, we can see that all assumptions in Theorem (10) are now satisfied. This completes the proof.  

Theorem(16):- Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric         𝑑→ 𝑋 be a 

continuous and non-decreasing mapping with respect to ≼. Assume that the following conditions hold: 

 (i)  there exists 𝑘 ∈ [0, 1) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘(𝑑(𝑥, 𝑦))  for all x, 𝑦 ∈ 𝑋. With x ≼ y ; 

 

 (ii) there exists 𝑥0 ∈ 𝑋  such that  𝑥0 ≼ 𝑇𝑥0;  

(iii) 𝑇 is continuous. in 𝑋 such that the metric space (𝑋, 𝑑) is complete.  

         Let 𝑇 : 𝑋        Then, 𝑇 has a fixed point. 
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Proof:- Suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) are mappings defined by 

                 α( x, y ) = { 1, if 𝑥 ≼ 𝑦 and  0, otherwise  }  

                   𝜂(𝑥, 𝑦) = { 
1

2
,  , if 𝑥 ≼ 𝑦 and  2, otherwise   } 

Let 𝑥, 𝑦 ∈ 𝑋 such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦). This implies that 𝑥 ≼ 𝑦. Since 𝑇 is non-decreasing with respect to ≼, 

we obtain that 𝑇𝑥 ≼ 𝑇𝑦. Therefore, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 𝜂(𝑇𝑥, 𝑇𝑦). It follows that 𝑇 is 𝛼-admissible with respect to 𝜂. 

Define a mapping 𝜓 : [0, +∞) → [0, +∞) defined by 𝜓(𝑡) = 𝑘𝑡 for all 𝑡 ∈ [0, +∞). We can see that 𝜓 ∈ Ψ2. For 

each 𝑥, 𝑦 ∈ 𝑋 with 

𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦), we obtain that 𝑥 ≼ 𝑦 and this yields 

               𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘 (𝑑 (𝑥, 𝑦)) = 𝜓 (𝑑 (𝑥, 𝑦)) . 

By using (ii), we have 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0). Hence, all assumptions in Theorem(9) are now satisfied. Thus, 

we obtain the desired result.  

Theorem(17):- Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric 𝑑 in 𝑋 such that the 

metric space (𝑋, 𝑑) is complete. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing mapping with respect to ≼. Assume that the 

following conditions hold: 

(i) there exists 𝑘 ∈ [0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘(𝑑(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≼ 𝑦; 

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ≼ 𝑇𝑥0; 

(iii) if {𝑥𝑛} is a non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞,  

    then 𝑥𝑛 ≼ 𝑥 for all 𝑛 ∈ N. 

                 Then, 𝑇 has a fixed point. 

Proof:-  Suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) and 𝜓 : [0, +∞) → [0, +∞) are mappings defined as in the proof of 

Theorem(16). Assume that {𝑥𝑛} is a sequence in 𝑋 such that 

    𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1)  for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞.This implies that 𝑥𝑛 ≼ 𝑥𝑛+1 for all 𝑛 ∈ N. Using 

(iii), this yield 𝑥𝑛 ≼ 𝑥 for all 𝑛 ∈ N. Therefore, 𝛼(𝑥𝑛, 𝑥) ≥ 𝜂(𝑥𝑛, 𝑥) for all 

 𝑛 ∈ N. Hence, all assumptions in Theorem(9) are now satisfied.  

                Thus, we obtain the desired result.  

Applications to Ordinary Differential Equations:-  
The following ordinary differential equation is taken from Samet et al. Denote by 𝐶([0, 1]) the set of all 

continuous functions defined on [0, 1] and let 𝑑 : 𝐶([0, 1]) × 𝐶([0, 1]) → R be         𝑑 (𝑥, 𝑦) =   ‖x − y‖∞ =  

max I x(t) – y(t) I ,          for every t ϵ [0, 1]          

It is well known that (𝐶([0, 1]), 𝑑) is a complete metric space. Let us consider the two-point boundary value 

problem of the second-order differential equation: 

             -  
ⅆ2𝑥

ⅆ𝑡2
    =    f ( t, x(t) ),        t ϵ [ 0, 1 ],   x(0) = x(1) = 0 , 

where 𝑓: [0, 1] × R → R is continuous. The Green function is defined by 

    

𝐺 (𝑡, 𝑠) = { t(1-s) ,   0 ≤ t ≤ s ≤ 1;   or   s(1-t) ,    0 ≤ s ≤ t ≤ 1 . } 

  

Assume that the following conditions hold: 
(i)  there exists a function 𝜙: R2 → R such that, for all 𝑡 ∈ [0, 1], for all t ϵ [ 0, 1 ], 

         for all 𝑎, 𝑏 ∈ R with 𝜙 (𝑎, 𝑏) ≥ 0 , we have  

   I f(t, a) – f(t, b) I  ≤ 8 ψ ( max I a – b I , for all a, b ϵ R, &  ϕ( a,b ) ≥ 0 ), where 𝜓 ∈ Ψ2; 
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(ii) there exists 𝑥0 ∈ 𝐶 ([0, 1]) such that, for all 𝑡 ∈ [0, 1], we have 

φ ( x0(t) , ∫ G( t , s ) f( s, x0(s) )
1

0
 ds ) ≥ 0 ,   

(iii) for all 𝑡 ∈ [0, 1], for all 𝑥, 𝑦 ∈ 𝐶 ([0, 1]), ϕ ( x(t), y(t) ) ≥ 0  implies  

Φ ( ∫
1

0
 G(t,s) f ( s, x(s) ) ds, ∫

1

0
 G(t,s) f ( s, y(s) ) ds  )  ≥ 0 ;  

(iv) if {𝑥𝑛} is a sequence in 𝐶 ([0, 1]) such that 𝑥𝑛 → 𝑥 ∈ 𝐶([0, 1]) and 𝜙(𝑥𝑛, 𝑥𝑛+1) ≥ 0, for all 𝑛 ∈ N, then 

𝜙(𝑥𝑛, 𝑥) ≥ 0 for all 𝑛 ∈ N. 

We now prove that existence of a solution of the mentioned second-order differential equation. The idea of 

proving the following theorem is taken from theorem(9) but is slightly different. 

Theorem(18):-  Under assumptions (i) – (iv), we have a solution in 𝐶2([0, 1]). 

Proof:-  It is well known that 𝑥 ∈ 𝐶2([0, 1]) is a solution which  is equivalent to 𝑥 ∈ 𝐶([0, 1]) is  a solution of 

the integral equation.   

  X(t) = ∫  𝐺(𝑡, 𝑠) 𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠
1

0
 ,      for every t ∈ [0, 1]. 

Let 𝑇: 𝐶([0, 1]) → 𝐶([0, 1]) be a mapping defined by 

 𝑇𝑥(t) =  ∫  𝐺(𝑡, 𝑠) 𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠
1

0
, ∀ t ϵ [0,1] 

Suppose that 𝑥, 𝑦 ∈ 𝐶([0, 1]) such that 𝜙(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for all 𝑡 ∈ [0, 1]. By applying (i), we obtain that 

I Tx(t) – Ty(t) I = I  ∫ 𝐺 ( 𝑡, 𝑠 )[ 𝑓 (𝑠, 𝑥(𝑠)) − 𝑓 ( 𝑠, 𝑦(𝑠))]𝑑𝑠 
1

0
 I 

                           

             ≤   ∫ 𝐺 ( 𝑡, 𝑠 ) I f(s, x(s)) − 𝑓 ( 𝑠, 𝑦(𝑠)) I𝑑𝑠 
1

0
  

            ≤ 8 (    ∫ 𝐺 ( 𝑡, 𝑠 )𝑑𝑠 
1

0
( 𝜓 ( II x − y II∞  ) ) 

            ≤ 8 ( sup. ∫ 𝐺 ( 𝑡, 𝑠 )𝑑𝑠 , ∀ ϵ [0,1])
1

0
( 𝜓 ( II x −  y II∞ )) 

 Since  ∫ 𝐺 ( 𝑡, 𝑠 )𝑑𝑠 =  −
t2

2
+  

t

2
,   ∀ ϵ [0,1])

1

0

 , we have  

  Sup   ∫ 𝐺 ( 𝑡, 𝑠 )𝑑𝑠 =
1

8
  ,   ∀ ϵ [0,1])

1

0

,  If follow that  

         II Tx – Ty II∞  ≤ 𝜓 ( II x – y II∞ ) ,  

For each x, y ϵ C ([0,1]), such that Ф( x(t), y(t) ) ≥ 0 for all t ϵ [0,1]. 

Let α,η : C( [0,1] x C( [0,1] ) → [ 0, ∞ ] be mappings defined by  

α( x, y ) = { 1,  Ф( x(t), y(t) ≥ 0,  t ϵ [0,1];   or 0,  otherwise,   } 

η( x, y ) =  { ½, Ф( x(t), y(t) ) ≥ 0, t ϵ [0,1];   or 2, otherwise.   } 

 

Let 𝑥, 𝑦 ∈ 𝐶( [0, 1] ) s.t. 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦).This implies that 𝜙(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for all 𝑡 ∈ [0, 1]. Therefore, 

Further, if 𝑥, 𝑦 ∈ 𝐶([0, 1]) such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦), then by using (iii), we have 

𝜙 (𝑇𝑥 (𝑡), 𝑇𝑦 (𝑡)) ≥ 0 

 

and this yields 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦). 

It follows that 𝑇 is 𝛼-admissible with respect to 𝜂. By (ii), there exists 𝑥0 ∈ 𝐶 ([0, 1]) such that 

 𝛼 (𝑥0, 𝑇𝑥0) ≥ 𝜂 (𝑥0, 𝑇𝑥0).  

Applying Theorem (9), we obtain that 𝑇 has a fixed point in 𝐶([0, 1]). 
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Conclusion:- In this paper, we prove some applications of fixed point theorem’s with respect to a non-linear 

differential equations. 
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